The success of Deep Reinforcement Learning (DRL) is largely attributed to utilizing Artificial Neural Networks (ANNs) as function approximators. Recent advances in neuroscience have unveiled that the human brain achieves efficient reward-based learning, at least by integrating spiking neurons with spatial-temporal dynamics and network topologies with biologically-plausible connectivity patterns. This integration process allows spiking neurons to efficiently combine information across and within layers via nonlinear dendritic trees and lateral interactions. The fusion of these two topologies enhances the network's information-processing ability, crucial for grasping intricate perceptions and guiding decision-making procedures. However, ANNs and brain networks differ significantly. ANNs lack intricate dynamical neurons and only feature inter-layer connections, typically achieved by direct linear summation, without intra-layer connections. This limitation leads to constrained network expressivity. To address this, we propose a novel alternative for function approximator, the Biologically-Plausible Topology improved Spiking Actor Network (BPT-SAN), tailored for efficient decision-making in DRL. The BPT-SAN incorporates spiking neurons with intricate spatial-temporal dynamics and introduces intra-layer connections, enhancing spatial-temporal state representation and facilitating more precise biological simulations. Diverging from the conventional direct linear weighted sum, the BPT-SAN models the local nonlinearities of dendritic trees within the inter-layer connections. For the intra-layer connections, the BPT-SAN introduces lateral interactions between adjacent neurons, integrating them into the membrane potential formula to ensure accurate spike firing.
Ensuring that AI systems reliably and robustly avoid harmful or dangerous behaviours is a crucial challenge, especially for AI systems with a high degree of autonomy and general intelligence, or systems used in safety-critical contexts. In this paper, we will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI. The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees. This is achieved by the interplay of three core components: a world model (which provides a mathematical description of how the AI system affects the outside world), a safety specification (which is a mathematical description of what effects are acceptable), and a verifier (which provides an auditable proof certificate that the AI satisfies the safety specification relative to the world model). We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them. We also argue for the necessity of this approach to AI safety, and for the inadequacy of the main alternative approaches.
Attention mechanisms play a crucial role in the neural revolution of Natural Language Processing (NLP). With the growth of attention-based models, several pruning techniques have been developed to identify and exploit sparseness, making these models more efficient. Most efforts focus on hard-coding attention patterns or pruning attention weights based on training data. We propose Attention Pruning (AP), a framework that observes attention patterns in a fixed dataset and generates a global sparseness mask. AP saves 90% of attention computation for language modeling and about 50% for machine translation and GLUE tasks, maintaining result quality. Our method reveals important distinctions between self- and cross-attention patterns, guiding future NLP research. Our framework can reduce both latency and memory requirements for any attention-based model, aiding in the development of improved models for existing or new NLP applications. We have demonstrated this with encoder and autoregressive transformer models using Triton GPU kernels and make our code publicly available at //github.com/irugina/AP.
We consider a constrained Markov Decision Problem (CMDP) where the goal of an agent is to maximize the expected discounted sum of rewards over an infinite horizon while ensuring that the expected discounted sum of costs exceeds a certain threshold. Building on the idea of momentum-based acceleration, we develop the Primal-Dual Accelerated Natural Policy Gradient (PD-ANPG) algorithm that guarantees an $\epsilon$ global optimality gap and $\epsilon$ constraint violation with $\mathcal{O}(\epsilon^{-3})$ sample complexity. This improves the state-of-the-art sample complexity in CMDP by a factor of $\mathcal{O}(\epsilon^{-1})$.
Deep neural networks (DNNs) that incorporated lifelong sequential modeling (LSM) have brought great success to recommendation systems in various social media platforms. While continuous improvements have been made in domain-specific LSM, limited work has been done in cross-domain LSM, which considers modeling of lifelong sequences of both target domain and source domain. In this paper, we propose Lifelong Cross Network (LCN) to incorporate cross-domain LSM to improve the click-through rate (CTR) prediction in the target domain. The proposed LCN contains a LifeLong Attention Pyramid (LAP) module that comprises of three levels of cascaded attentions to effectively extract interest representations with respect to the candidate item from lifelong sequences. We also propose Cross Representation Production (CRP) module to enforce additional supervision on the learning and alignment of cross-domain representations so that they can be better reused on learning of the CTR prediction in the target domain. We conducted extensive experiments on WeChat Channels industrial dataset as well as on benchmark dataset. Results have revealed that the proposed LCN outperforms existing work in terms of both prediction accuracy and online performance.
Concerns for the resilience of Cyber-Physical Systems (CPS)s in critical infrastructure are growing. CPS integrate sensing, computation, control, and networking into physical objects and mission-critical services, connecting traditional infrastructure to internet technologies. While this integration increases service efficiency, it has to face the possibility of new threats posed by the new functionalities. This leads to cyber-threats, such as denial-of-service, modification of data, information leakage, spreading of malware, and many others. Cyber-resilience refers to the ability of a CPS to prepare, absorb, recover, and adapt to the adverse effects associated with cyber-threats, e.g., physical degradation of the CPS performance resulting from a cyber-attack. Cyber-resilience aims at ensuring CPS survival by keeping the core functionalities of the CPS in case of extreme events. The literature on cyber-resilience is rapidly increasing, leading to a broad variety of research works addressing this new topic. In this article, we create a systematization of knowledge about existing scientific efforts of making CPSs cyber-resilient. We systematically survey recent literature addressing cyber-resilience with a focus on techniques that may be used on CPSs. We first provide preliminaries and background on CPSs and threats, and subsequently survey state-of-the-art approaches that have been proposed by recent research work applicable to CPSs. In particular, we aim at differentiating research work from traditional risk management approaches based on the general acceptance that it is unfeasible to prevent and mitigate all possible risks threatening a CPS. We also discuss questions and research challenges, with a focus on the practical aspects of cyber-resilience, such as the use of metrics and evaluation methods as well as testing and validation environments.
Amid the increasing interest in the deployment of Distributed Energy Resources (DERs), the Virtual Power Plant (VPP) has emerged as a pivotal tool for aggregating diverse DERs and facilitating their participation in wholesale energy markets. These VPP deployments have been fueled by the Federal Energy Regulatory Commission's Order 2222, which makes DERs and VPPs competitive across market segments. However, the diversity and decentralized nature of DERs present significant challenges to the scalable coordination of VPP assets. To address efficiency and speed bottlenecks, this paper presents a novel machine learning-assisted distributed optimization to coordinate VPP assets. Our method, named LOOP-MAC(Learning to Optimize the Optimization Process for Multi-agent Coordination), adopts a multi-agent coordination perspective where each VPP agent manages multiple DERs and utilizes neural network approximators to expedite the solution search. The LOOP-MAC method employs a gauge map to guarantee strict compliance with local constraints, effectively reducing the need for additional post-processing steps. Our results highlight the advantages of LOOP-MAC, showcasing accelerated solution times per iteration and significantly reduced convergence times. The LOOP-MAC method outperforms conventional centralized and distributed optimization methods in optimization tasks that require repetitive and sequential execution.
General Value Functions (GVFs) (Sutton et al, 2011) are an established way to represent predictive knowledge in reinforcement learning. Each GVF computes the expected return for a given policy, based on a unique pseudo-reward. Multiple GVFs can be estimated in parallel using off-policy learning from a single stream of data, often sourced from a fixed behavior policy or pre-collected dataset. This leaves an open question: how can behavior policy be chosen for data-efficient GVF learning? To address this gap, we propose GVFExplorer, which aims at learning a behavior policy that efficiently gathers data for evaluating multiple GVFs in parallel. This behavior policy selects actions in proportion to the total variance in the return across all GVFs, reducing the number of environmental interactions. To enable accurate variance estimation, we use a recently proposed temporal-difference-style variance estimator. We prove that each behavior policy update reduces the mean squared error in the summed predictions over all GVFs. We empirically demonstrate our method's performance in both tabular representations and nonlinear function approximation.
This paper investigates practical coding schemes for Distributed Hypothesis Testing (DHT). While the literature has extensively analyzed the information-theoretic performance of DHT and established bounds on Type-II error exponents through quantize and quantize-binning achievability schemes, the practical implementation of DHT coding schemes has not yet been investigated. Therefore, this paper introduces practical implementations of quantizers and quantize-binning schemes for DHT, leveraging short-length binary linear block codes. Furthermore, it provides exact analytical expressions for Type-I and Type-II error probabilities associated with each proposed coding scheme. Numerical results show the accuracy of the proposed analytical error probability expressions, and enable to compare the performance of the proposed schemes.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.