亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of approximate sampling from non-log-concave distributions, e.g., Gaussian mixtures, which is often challenging even in low dimensions due to their multimodality. We focus on performing this task via Markov chain Monte Carlo (MCMC) methods derived from discretizations of the overdamped Langevin diffusions, which are commonly known as Langevin Monte Carlo algorithms. Furthermore, we are also interested in two nonsmooth cases for which a large class of proximal MCMC methods have been developed: (i) a nonsmooth prior is considered with a Gaussian mixture likelihood; (ii) a Laplacian mixture distribution. Such nonsmooth and non-log-concave sampling tasks arise from a wide range of applications to Bayesian inference and imaging inverse problems such as image deconvolution. We perform numerical simulations to compare the performance of most commonly used Langevin Monte Carlo algorithms.

相關內容

In this paper, we consider algorithms for edge-coloring multigraphs $G$ of bounded maximum degree, i.e., $\Delta(G) = O(1)$. Shannon's theorem states that any multigraph of maximum degree $\Delta$ can be properly edge-colored with $\lfloor 3\Delta/2\rfloor$ colors. Our main results include algorithms for computing such colorings. We design deterministic and randomized sequential algorithms with running time $O(n\log n)$ and $O(n)$, respectively. This is the first improvement since the $O(n^2)$ algorithm in Shannon's original paper, and our randomized algorithm is optimal up to constant factors. We also develop distributed algorithms in the $\mathsf{LOCAL}$ model of computation. Namely, we design deterministic and randomized $\mathsf{LOCAL}$ algorithms with running time $\tilde O(\log^5 n)$ and $O(\log^2n)$, respectively. The deterministic sequential algorithm is a simplified extension of earlier work of Gabow et al. in edge-coloring simple graphs. The other algorithms apply the entropy compression method in a similar way to recent work by the author and Bernshteyn, where the authors design algorithms for Vizing's theorem for simple graphs. We also extend their results to Vizing's theorem for multigraphs.

We propose to minimize a generic differentiable objective with $L_1$ constraint using a simple reparametrization and straightforward stochastic gradient descent. Our proposal is the direct generalization of previous ideas that the $L_1$ penalty may be equivalent to a differentiable reparametrization with weight decay. We prove that the proposed method, \textit{spred}, is an exact differentiable solver of $L_1$ and that the reparametrization trick is completely ``benign" for a generic nonconvex function. Practically, we demonstrate the usefulness of the method in (1) training sparse neural networks to perform gene selection tasks, which involves finding relevant features in a very high dimensional space, and (2) neural network compression task, to which previous attempts at applying the $L_1$-penalty have been unsuccessful. Conceptually, our result bridges the gap between the sparsity in deep learning and conventional statistical learning.

Deep-learning models for traffic data prediction can have superior performance in modeling complex functions using a multi-layer architecture. However, a major drawback of these approaches is that most of these approaches do not offer forecasts with uncertainty estimates, which are essential for traffic operations and control. Without uncertainty estimates, it is difficult to place any level of trust to the model predictions, and operational strategies relying on overconfident predictions can lead to worsening traffic conditions. In this study, we propose a Bayesian recurrent neural network framework for uncertainty quantification in traffic prediction with higher generalizability by introducing spectral normalization to its hidden layers. In our paper, we have shown that normalization alters the training process of deep neural networks by controlling the model's complexity and reducing the risk of overfitting to the training data. This, in turn, helps improve the generalization performance of the model on out-of-distribution datasets. Results demonstrate that spectral normalization improves uncertainty estimates and significantly outperforms both the layer normalization and model without normalization in single-step prediction horizons. This improved performance can be attributed to the ability of spectral normalization to better localize the feature space of the data under perturbations. Our findings are especially relevant to traffic management applications, where predicting traffic conditions across multiple locations is the goal, but the availability of training data from multiple locations is limited. Spectral normalization, therefore, provides a more generalizable approach that can effectively capture the underlying patterns in traffic data without requiring location-specific models.

This study investigates a class of initial-boundary value problems pertaining to the time-fractional mixed sub-diffusion and diffusion-wave equation (SDDWE). To facilitate the development of a numerical method and analysis, the original problem is transformed into a new integro-differential model which includes the Caputo derivatives and the Riemann-Liouville fractional integrals with orders belonging to (0,1). By providing an a priori estimate of the solution, we have established the existence and uniqueness of a numerical solution for the problem. We propose a second-order method to approximate the fractional Riemann-Liouville integral and employ an L2 type formula to approximate the Caputo derivative. This results in a method with a temporal accuracy of second-order for approximating the considered model. The proof of the unconditional stability of the proposed difference scheme is established. Moreover, we demonstrate the proposed method's potential to construct and analyze a second-order L2-type numerical scheme for a broader class of the time-fractional mixed SDDWEs with multi-term time-fractional derivatives. Numerical results are presented to assess the accuracy of the method and validate the theoretical findings.

In this paper, we provide a novel framework for the analysis of generalization error of first-order optimization algorithms for statistical learning when the gradient can only be accessed through partial observations given by an oracle. Our analysis relies on the regularity of the gradient w.r.t. the data samples, and allows to derive near matching upper and lower bounds for the generalization error of multiple learning problems, including supervised learning, transfer learning, robust learning, distributed learning and communication efficient learning using gradient quantization. These results hold for smooth and strongly-convex optimization problems, as well as smooth non-convex optimization problems verifying a Polyak-Lojasiewicz assumption. In particular, our upper and lower bounds depend on a novel quantity that extends the notion of conditional standard deviation, and is a measure of the extent to which the gradient can be approximated by having access to the oracle. As a consequence, our analysis provides a precise meaning to the intuition that optimization of the statistical learning objective is as hard as the estimation of its gradient. Finally, we show that, in the case of standard supervised learning, mini-batch gradient descent with increasing batch sizes and a warm start can reach a generalization error that is optimal up to a multiplicative factor, thus motivating the use of this optimization scheme in practical applications.

Providing a model that achieves a strong predictive performance and at the same time is interpretable by humans is one of the most difficult challenges in machine learning research due to the conflicting nature of these two objectives. To address this challenge, we propose a modification of the Radial Basis Function Neural Network model by equipping its Gaussian kernel with a learnable precision matrix. We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed. In particular, the eigenvectors explain the directions of maximum sensitivity of the model revealing the active subspace and suggesting potential applications for supervised dimensionality reduction. At the same time, the eigenvectors highlight the relationship in terms of absolute variation between the input and the latent variables, thereby allowing us to extract a ranking of the input variables based on their importance to the prediction task enhancing the model interpretability. We conducted numerical experiments for regression, classification, and feature selection tasks, comparing our model against popular machine learning models and the state-of-the-art deep learning-based embedding feature selection techniques. Our results demonstrate that the proposed model does not only yield an attractive prediction performance with respect to the competitors but also provides meaningful and interpretable results that potentially could assist the decision-making process in real-world applications. A PyTorch implementation of the model is available on GitHub at the following link. //github.com/dannyzx/GRBF-NNs

In this paper, we provide a family of dynamic programming based algorithms to sample nearly-shortest self avoiding walks between two points of the integer lattice $\mathbb{Z}^2$. We show that if the shortest path of between two points has length $n$, then we can sample paths (self-avoiding-walks) of length $n+O(n^{1-\delta})$ in polynomial time. As an example of an application, we will show that the Glauber dynamics Markov chain for partitions of the Aztec Diamonds in $\mathbb{Z}^2$ into two contiguous regions with nearly tight perimeter constraints has exponential mixing time, while the algorithm provided in this paper can be used be used to uniformly (and exactly) sample such partitions efficiently.

Inverse problems generally require a regularizer or prior for a good solution. A recent trend is to train a convolutional net to denoise images, and use this net as a prior when solving the inverse problem. Several proposals depend on a singular value decomposition of the forward operator, and several others backpropagate through the denoising net at runtime. Here we propose a simpler approach that combines the traditional gradient-based minimization of reconstruction error with denoising. Noise is also added at each step, so the iterative dynamics resembles a Langevin or diffusion process. Both the level of added noise and the size of the denoising step decay exponentially with time. We apply our method to the problem of tomographic reconstruction from electron micrographs acquired at multiple tilt angles. With empirical studies using simulated tilt views, we find parameter settings for our method that produce good results. We show that high accuracy can be achieved with as few as 50 denoising steps. We also compare with DDRM and DPS, more complex diffusion methods of the kinds mentioned above. These methods are less accurate (as measured by MSE and SSIM) for our tomography problem, even after the generation hyperparameters are optimized. Finally we extend our method to reconstruction of arbitrary-sized images and show results on 128 $\times$ 1568 pixel images

Markov chain Monte Carlo (MCMC) methods have existed for a long time and the field is well-explored. The purpose of MCMC methods is to approximate a distribution through repeated sampling; most MCMC algorithms exhibit asymptotically optimal behavior in that they converge to the true distribution at the limit. However, what differentiates these algorithms are their practical convergence guarantees and efficiency. While a sampler may eventually approximate a distribution well, because it is used in the real world it is necessary that the point at which the sampler yields a good estimate of the distribution is reachable in a reasonable amount of time. Similarly, if it is computationally difficult or intractable to produce good samples from a distribution for use in estimation, then there is no real-world utility afforded by the sampler. Thus, most MCMC methods these days focus on improving efficiency and speeding up convergence. However, many MCMC algorithms suffer from random walk behavior and often only mitigate such behavior as outright erasing random walks is difficult. Hamiltonian Monte Carlo (HMC) is a class of MCMC methods that theoretically exhibit no random walk behavior because of properties related to Hamiltonian dynamics. This paper introduces modifications to a specific HMC algorithm known as the no-U-turn sampler (NUTS) that aims to explore the sample space faster than NUTS, yielding a sampler that has faster convergence to the true distribution than NUTS.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

北京阿比特科技有限公司