亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The paper considers the fractional Fourier transform (FRFT)--based numerical inversion of Fourier and Laplace transforms and the closed Newton Cotes quadrature rules. It is shown that the fast FRFT of a QN-long weighted sequence is the composite of two fast FRFTs: the fast FRFT of a Q-long weighted sequence and the fast FRFT of an N-long sequence. The Newton-Cotes rules, the composite fast FRFT, and non-weighted fast Fractional Fourier transform (FRFT) algorithms are applied to the Variance Gamma distribution and the Generalized Tempered Stable (GTS) distribution for illustrations. Compared to the non-weighted fast FRFT, the composite fast FRFT provides more accurate results with a small sample size, and the accuracy increases with the number of weights (Q).

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存儲技術會議。 Publisher:USENIX。 SIT:

We systematically analyze the accuracy of Physics-Informed Neural Networks (PINNs) in approximating solutions to the critical Surface Quasi-Geostrophic (SQG) equation on two-dimensional periodic boxes. The critical SQG equation involves advection and diffusion described by nonlocal periodic operators, posing challenges for neural network-based methods that do not commonly exhibit periodic boundary conditions. In this paper, we present a novel approximation of these operators using their nonperiodic analogs based on singular integral representation formulas and use it to perform error estimates. This idea can be generalized to a larger class of nonlocal partial differential equations whose solutions satisfy prescribed boundary conditions, thereby initiating a new PINNs theory for equations with nonlocalities.

This paper proposes two approaches for reducing the impact of the error floor phenomenon when decoding quantum low-density parity-check codes with belief propagation based algorithms. First, a low-complexity syndrome-based linear programming (SB-LP) decoding algorithm is proposed, and second, the proposed SB-LP is applied as a post-processing step after syndrome-based min-sum (SB-MS) decoding. For the latter case, a new early stopping criterion is introduced to decide when to activate the SB-LP algorithm, avoiding executing a predefined maximum number of iterations for the SB-MS decoder. Simulation results show, for a sample hypergraph code, that the proposed decoder can lower the error floor by two to three orders of magnitude compared to SB-MS for the same total number of decoding iterations.

This paper presents NOMAD (Non-Matching Audio Distance), a differentiable perceptual similarity metric that measures the distance of a degraded signal against non-matching references. The proposed method is based on learning deep feature embeddings via a triplet loss guided by the Neurogram Similarity Index Measure (NSIM) to capture degradation intensity. During inference, the similarity score between any two audio samples is computed through Euclidean distance of their embeddings. NOMAD is fully unsupervised and can be used in general perceptual audio tasks for audio analysis e.g. quality assessment and generative tasks such as speech enhancement and speech synthesis. The proposed method is evaluated with 3 tasks. Ranking degradation intensity, predicting speech quality, and as a loss function for speech enhancement. Results indicate NOMAD outperforms other non-matching reference approaches in both ranking degradation intensity and quality assessment, exhibiting competitive performance with full-reference audio metrics. NOMAD demonstrates a promising technique that mimics human capabilities in assessing audio quality with non-matching references to learn perceptual embeddings without the need for human-generated labels.

Temporal Sentence Grounding in Video (TSGV) is troubled by dataset bias issue, which is caused by the uneven temporal distribution of the target moments for samples with similar semantic components in input videos or query texts. Existing methods resort to utilizing prior knowledge about bias to artificially break this uneven distribution, which only removes a limited amount of significant language biases. In this work, we propose the bias-conflict sample synthesis and adversarial removal debias strategy (BSSARD), which dynamically generates bias-conflict samples by explicitly leveraging potentially spurious correlations between single-modality features and the temporal position of the target moments. Through adversarial training, its bias generators continuously introduce biases and generate bias-conflict samples to deceive its grounding model. Meanwhile, the grounding model continuously eliminates the introduced biases, which requires it to model multi-modality alignment information. BSSARD will cover most kinds of coupling relationships and disrupt language and visual biases simultaneously. Extensive experiments on Charades-CD and ActivityNet-CD demonstrate the promising debiasing capability of BSSARD. Source codes are available at //github.com/qzhb/BSSARD.

This paper combines modern numerical computation with theoretical results to improve our understanding of the growth factor problem for Gaussian elimination. On the computational side we obtain lower bounds for the maximum growth for complete pivoting for $n=1:75$ and $n=100$ using the Julia JuMP optimization package. At $n=100$ we obtain a growth factor bigger than $3n$. The numerical evidence suggests that the maximum growth factor is bigger than $n$ if and only if $n \ge 11$. We also present a number of theoretical results. We show that the maximum growth factor over matrices with entries restricted to a subset of the reals is nearly equal to the maximum growth factor over all real matrices. We also show that the growth factors under floating point arithmetic and exact arithmetic are nearly identical. Finally, through numerical search, and stability and extrapolation results, we provide improved lower bounds for the maximum growth factor. Specifically, we find that the largest growth factor is bigger than $1.0045n$ for $n>10$, and the lim sup of the ratio with $n$ is greater than or equal to $3.317$. In contrast to the old conjecture that growth might never be bigger than $n$, it seems likely that the maximum growth divided by $n$ goes to infinity as $n \rightarrow \infty$.

We introduce a new discretization based on the Trefftz-DG method for solving the Stokes equations. Discrete solutions of a corresponding method fulfill the Stokes equation pointwise within each element and yield element-wise divergence-free solutions. Compared to standard DG methods, a strong reduction of the degrees of freedom is achieved, especially for higher order polynomial degrees. In addition, in contrast to many other Trefftz-DG methods, our approach allows to easily incorporate inhomogeneous right hand sides (driving forces) by using the concept of the embedded Trefftz-DG method. On top of a detailed a priori error analysis, we further compare our approach to standard discontinuous Galerkin Stokes discretizations and present numerical examples.

This paper proposes two methods for causal additive models with unobserved variables (CAM-UV). CAM-UV assumes that the causal functions take the form of generalized additive models and that latent confounders are present. First, we propose a method that leverages prior knowledge for efficient causal discovery. Then, we propose an extension of this method for inferring causality in time series data. The original CAM-UV algorithm differs from other existing causal function models in that it does not seek the causal order between observed variables, but rather aims to identify the causes for each observed variable. Therefore, the first proposed method in this paper utilizes prior knowledge, such as understanding that certain variables cannot be causes of specific others. Moreover, by incorporating the prior knowledge that causes precedes their effects in time, we extend the first algorithm to the second method for causal discovery in time series data. We validate the first proposed method by using simulated data to demonstrate that the accuracy of causal discovery increases as more prior knowledge is accumulated. Additionally, we test the second proposed method by comparing it with existing time series causal discovery methods, using both simulated data and real-world data.

This research investigates the transferability of Automatic Speech Recognition (ASR)-robust Natural Language Understanding (NLU) models from controlled experimental conditions to practical, real-world applications. Focused on smart home automation commands in Urdu, the study assesses model performance under diverse noise profiles, linguistic variations, and ASR error scenarios. Leveraging the UrduBERT model, the research employs a systematic methodology involving real-world data collection, cross-validation, transfer learning, noise variation studies, and domain adaptation. Evaluation metrics encompass task-specific accuracy, latency, user satisfaction, and robustness to ASR errors. The findings contribute insights into the challenges and adaptability of ASR-robust NLU models in transcending controlled environments.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司