亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We formulate an asymmetric (or non-commutative) distance between tasks based on Fisher Information Matrices. We provide proof of consistency for our distance through theorems and experiments on various classification tasks. We then apply our proposed measure of task distance in transfer learning on visual tasks in the Taskonomy dataset. Additionally, we show how the proposed distance between a target task and a set of baseline tasks can be used to reduce the neural architecture search space for the target task. The complexity reduction in search space for task-specific architectures is achieved by building on the optimized architectures for similar tasks instead of doing a full search without using this side information. Experimental results demonstrate the efficacy of the proposed approach and its improvements over other methods.

相關內容

遷移學(xue)習(Transfer Learning)是一(yi)種機器(qi)學(xue)習方法,是把一(yi)個(ge)領(ling)(ling)域(yu)(yu)(即(ji)源領(ling)(ling)域(yu)(yu))的(de)(de)(de)(de)知識(shi),遷移到另(ling)外一(yi)個(ge)領(ling)(ling)域(yu)(yu)(即(ji)目標領(ling)(ling)域(yu)(yu)),使得目標領(ling)(ling)域(yu)(yu)能夠取得更好(hao)的(de)(de)(de)(de)學(xue)習效果。遷移學(xue)習(TL)是機器(qi)學(xue)習(ML)中的(de)(de)(de)(de)一(yi)個(ge)研究問(wen)題,著(zhu)重于存(cun)儲在解決一(yi)個(ge)問(wen)題時獲(huo)得的(de)(de)(de)(de)知識(shi)并將(jiang)其應用于另(ling)一(yi)個(ge)但相(xiang)關的(de)(de)(de)(de)問(wen)題。例如,在學(xue)習識(shi)別汽車(che)時獲(huo)得的(de)(de)(de)(de)知識(shi)可以在嘗試識(shi)別卡車(che)時應用。盡管這兩(liang)個(ge)領(ling)(ling)域(yu)(yu)之間(jian)的(de)(de)(de)(de)正式聯系是有限的(de)(de)(de)(de),但這一(yi)領(ling)(ling)域(yu)(yu)的(de)(de)(de)(de)研究與心理學(xue)文獻關于學(xue)習轉移的(de)(de)(de)(de)悠久歷史(shi)有關。從實(shi)踐的(de)(de)(de)(de)角度來看,為學(xue)習新(xin)任(ren)務(wu)而(er)重用或轉移先前學(xue)習的(de)(de)(de)(de)任(ren)務(wu)中的(de)(de)(de)(de)信息(xi)可能會顯著(zhu)提高強化學(xue)習代(dai)理的(de)(de)(de)(de)樣(yang)本(ben)效率。

知識薈萃

精品(pin)入門(men)和進階教程、論文和代碼整理等

更多

查看相(xiang)關VIP內容、論(lun)文、資訊(xun)等

Existing neural architecture search (NAS) methods often return an architecture with good search performance but generalizes poorly to the test setting. To achieve better generalization, we propose a novel neighborhood-aware NAS formulation to identify flat-minima architectures in the search space, with the assumption that flat minima generalize better than sharp minima. The phrase ``flat-minima architecture'' refers to architectures whose performance is stable under small perturbations in the architecture (e.g., replacing a convolution with a skip connection). Our formulation takes the ``flatness'' of an architecture into account by aggregating the performance over the neighborhood of this architecture. We demonstrate a principled way to apply our formulation to existing search algorithms, including sampling-based algorithms and gradient-based algorithms. To facilitate the application to gradient-based algorithms, we also propose a differentiable representation for the neighborhood of architectures. Based on our formulation, we propose neighborhood-aware random search (NA-RS) and neighborhood-aware differentiable architecture search (NA-DARTS). Notably, by simply augmenting DARTS with our formulation, NA-DARTS outperforms DARTS and achieves state-of-the-art performance on established benchmarks, including CIFAR-10, CIFAR-100 and ImageNet.

Neural Architecture Search (NAS) methods have been successfully applied to image tasks with excellent results. However, NAS methods are often complex and tend to converge to local minima as soon as generated architectures seem to yield good results. In this paper, we propose G-EA, a novel approach for guided evolutionary NAS. The rationale behind G-EA, is to explore the search space by generating and evaluating several architectures in each generation at initialization stage using a zero-proxy estimator, where only the highest-scoring network is trained and kept for the next generation. This evaluation at initialization stage allows continuous extraction of knowledge from the search space without increasing computation, thus allowing the search to be efficiently guided. Moreover, G-EA forces exploitation of the most performant networks by descendant generation while at the same time forcing exploration by parent mutation and by favouring younger architectures to the detriment of older ones. Experimental results demonstrate the effectiveness of the proposed method, showing that G-EA achieves state-of-the-art results in NAS-Bench-201 search space in CIFAR-10, CIFAR-100 and ImageNet16-120, with mean accuracies of 93.98%, 72.12% and 45.94% respectively.

Most existing neural architecture search (NAS) benchmarks and algorithms prioritize performance on well-studied tasks, e.g., image classification on CIFAR and ImageNet. This makes the applicability of NAS approaches in more diverse areas inadequately understood. In this paper, we present NAS-Bench-360, a benchmark suite for evaluating state-of-the-art NAS methods for convolutional neural networks (CNNs). To construct it, we curate a collection of ten tasks spanning a diverse array of application domains, dataset sizes, problem dimensionalities, and learning objectives. By carefully selecting tasks that can both interoperate with modern CNN-based search methods but that are also far-afield from their original development domain, we can use NAS-Bench-360 to investigate the following central question: do existing state-of-the-art NAS methods perform well on diverse tasks? Our experiments show that a modern NAS procedure designed for image classification can indeed find good architectures for tasks with other dimensionalities and learning objectives; however, the same method struggles against more task-specific methods and performs catastrophically poorly on classification in non-vision domains. The case for NAS robustness becomes even more dire in a resource-constrained setting, where a recent NAS method provides little-to-no benefit over much simpler baselines. These results demonstrate the need for a benchmark such as NAS-Bench-360 to help develop NAS approaches that work well on a variety of tasks, a crucial component of a truly robust and automated pipeline. We conclude with a demonstration of the kind of future research our suite of tasks will enable. All data and code is made publicly available.

In real-world applications, data often come in a growing manner, where the data volume and the number of classes may increase dynamically. This will bring a critical challenge for learning: given the increasing data volume or the number of classes, one has to instantaneously adjust the neural model capacity to obtain promising performance. Existing methods either ignore the growing nature of data or seek to independently search an optimal architecture for a given dataset, and thus are incapable of promptly adjusting the architectures for the changed data. To address this, we present a neural architecture adaptation method, namely Adaptation eXpert (AdaXpert), to efficiently adjust previous architectures on the growing data. Specifically, we introduce an architecture adjuster to generate a suitable architecture for each data snapshot, based on the previous architecture and the different extent between current and previous data distributions. Furthermore, we propose an adaptation condition to determine the necessity of adjustment, thereby avoiding unnecessary and time-consuming adjustments. Extensive experiments on two growth scenarios (increasing data volume and number of classes) demonstrate the effectiveness of the proposed method.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

To improve the search efficiency for Neural Architecture Search (NAS), One-shot NAS proposes to train a single super-net to approximate the performance of proposal architectures during search via weight-sharing. While this greatly reduces the computation cost, due to approximation error, the performance prediction by a single super-net is less accurate than training each proposal architecture from scratch, leading to search inefficiency. In this work, we propose few-shot NAS that explores the choice of using multiple super-nets: each super-net is pre-trained to be in charge of a sub-region of the search space. This reduces the prediction error of each super-net. Moreover, training these super-nets can be done jointly via sequential fine-tuning. A natural choice of sub-region is to follow the splitting of search space in NAS. We empirically evaluate our approach on three different tasks in NAS-Bench-201. Extensive results have demonstrated that few-shot NAS, using only 5 super-nets, significantly improves performance of many search methods with slight increase of search time. The architectures found by DARTs and ENAS with few-shot models achieved 88.53% and 86.50% test accuracy on CIFAR-10 in NAS-Bench-201, significantly outperformed their one-shot counterparts (with 54.30% and 54.30% test accuracy). Moreover, on AUTOGAN and DARTS, few-shot NAS also outperforms previously state-of-the-art models.

Multi-task learning (MTL) allows deep neural networks to learn from related tasks by sharing parameters with other networks. In practice, however, MTL involves searching an enormous space of possible parameter sharing architectures to find (a) the layers or subspaces that benefit from sharing, (b) the appropriate amount of sharing, and (c) the appropriate relative weights of the different task losses. Recent work has addressed each of the above problems in isolation. In this work we present an approach that learns a latent multi-task architecture that jointly addresses (a)--(c). We present experiments on synthetic data and data from OntoNotes 5.0, including four different tasks and seven different domains. Our extension consistently outperforms previous approaches to learning latent architectures for multi-task problems and achieves up to 15% average error reductions over common approaches to MTL.

Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space. (2) A predictor takes the continuous representation of a network as input and predicts its accuracy. (3) A decoder maps a continuous representation of a network back to its architecture. The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy. Such a better embedding is then decoded to a network by the decoder. Experiments show that the architecture discovered by our method is very competitive for image classification task on CIFAR-10 and language modeling task on PTB, outperforming or on par with the best results of previous architecture search methods with a significantly reduction of computational resources. Specifically we obtain $2.07\%$ test set error rate for CIFAR-10 image classification task and $55.9$ test set perplexity of PTB language modeling task. The best discovered architectures on both tasks are successfully transferred to other tasks such as CIFAR-100 and WikiText-2.

The work in this paper is driven by the question how to exploit the temporal cues available in videos for their accurate classification, and for human action recognition in particular? Thus far, the vision community has focused on spatio-temporal approaches with fixed temporal convolution kernel depths. We introduce a new temporal layer that models variable temporal convolution kernel depths. We embed this new temporal layer in our proposed 3D CNN. We extend the DenseNet architecture - which normally is 2D - with 3D filters and pooling kernels. We name our proposed video convolutional network `Temporal 3D ConvNet'~(T3D) and its new temporal layer `Temporal Transition Layer'~(TTL). Our experiments show that T3D outperforms the current state-of-the-art methods on the HMDB51, UCF101 and Kinetics datasets. The other issue in training 3D ConvNets is about training them from scratch with a huge labeled dataset to get a reasonable performance. So the knowledge learned in 2D ConvNets is completely ignored. Another contribution in this work is a simple and effective technique to transfer knowledge from a pre-trained 2D CNN to a randomly initialized 3D CNN for a stable weight initialization. This allows us to significantly reduce the number of training samples for 3D CNNs. Thus, by finetuning this network, we beat the performance of generic and recent methods in 3D CNNs, which were trained on large video datasets, e.g. Sports-1M, and finetuned on the target datasets, e.g. HMDB51/UCF101. The T3D codes will be released

北京阿比特科技有限公司