Regression experts consistently recommend plotting residuals for model diagnosis, despite the availability of many numerical hypothesis test procedures designed to use residuals to assess problems with a model fit. Here we provide evidence for why this is good advice using data from a visual inference experiment. We show how conventional tests are too sensitive, which means that too often the conclusion would be that the model fit is inadequate. The experiment uses the lineup protocol which puts a residual plot in the context of null plots. This helps generate reliable and consistent reading of residual plots for better model diagnosis. It can also help in an obverse situation where a conventional test would fail to detect a problem with a model due to contaminated data. The lineup protocol also detects a range of departures from good residuals simultaneously. Supplemental materials for the article are available online.
Leveraging the kernel trick in both the input and output spaces, surrogate kernel methods are a flexible and theoretically grounded solution to structured output prediction. If they provide state-of-the-art performance on complex data sets of moderate size (e.g., in chemoinformatics), these approaches however fail to scale. We propose to equip surrogate kernel methods with sketching-based approximations, applied to both the input and output feature maps. We prove excess risk bounds on the original structured prediction problem, showing how to attain close-to-optimal rates with a reduced sketch size that depends on the eigendecay of the input/output covariance operators. From a computational perspective, we show that the two approximations have distinct but complementary impacts: sketching the input kernel mostly reduces training time, while sketching the output kernel decreases the inference time. Empirically, our approach is shown to scale, achieving state-of-the-art performance on benchmark data sets where non-sketched methods are intractable.
Matrix-vector multiplication forms the basis of many iterative solution algorithms and as such is an important algorithm also for hierarchical matrices. However, due to its low computational intensity, its performance is typically limited by the available memory bandwidth. By optimizing the storage representation of the data within such matrices, this limitation can be lifted and the performance increased. This applies not only to hierarchical matrices but for also for other low-rank approximation schemes, e.g. block low-rank matrices.
The current state-of-the-art theoretical analysis of Actor-Critic (AC) algorithms significantly lags in addressing the practical aspects of AC implementations. This crucial gap needs bridging to bring the analysis in line with practical implementations of AC. To address this, we advocate for considering the MMCLG criteria: \textbf{M}ulti-layer neural network parametrization for actor/critic, \textbf{M}arkovian sampling, \textbf{C}ontinuous state-action spaces, the performance of the \textbf{L}ast iterate, and \textbf{G}lobal optimality. These aspects are practically significant and have been largely overlooked in existing theoretical analyses of AC algorithms. In this work, we address these gaps by providing the first comprehensive theoretical analysis of AC algorithms that encompasses all five crucial practical aspects (covers MMCLG criteria). We establish global convergence sample complexity bounds of $\tilde{\mathcal{O}}\left({\epsilon^{-3}}\right)$. We achieve this result through our novel use of the weak gradient domination property of MDP's and our unique analysis of the error in critic estimation.
For estimating the proportion of false null hypotheses in multiple testing, a family of estimators by Storey (2002) is widely used in the applied and statistical literature, with many methods suggested for selecting the parameter $\lambda$. Inspired by change-point concepts, our new approach to the latter problem first approximates the $p$-value plot with a piecewise linear function with a single change-point and then selects the $p$-value at the change-point location as $\lambda$. Simulations show that our method has among the smallest RMSE across various settings, and we extend it to address the estimation in cases of superuniform $p$-values. We provide asymptotic theory for our estimator, relying on the theory of quantile processes. Additionally, we propose an application in the change-point literature and illustrate it using high-dimensional CNV data.
Flexible continuum manipulators are valued for minimally invasive surgery, offering access to confined spaces through nonlinear paths. However, cable-driven manipulators face control difficulties due to hysteresis from cabling effects such as friction, elongation, and coupling. These effects are difficult to model due to nonlinearity and the difficulties become even more evident when dealing with long and coupled, multi-segmented manipulator. This paper proposes a data-driven approach based on Deep Neural Networks (DNN) to capture these nonlinear and previous states-dependent characteristics of cable actuation. We collect physical joint configurations according to command joint configurations using RGBD sensing and 7 fiducial markers to model the hysteresis of the proposed manipulator. Result on a study comparing the estimation performance of four DNN models show that the Temporal Convolution Network (TCN) demonstrates the highest predictive capability. Leveraging trained TCNs, we build a control algorithm to compensate for hysteresis. Tracking tests in task space using unseen trajectories show that the proposed control algorithm reduces the average position and orientation error by 61.39% (from 13.7mm to 5.29 mm) and 64.04% (from 31.17{\deg} to 11.21{\deg}), respectively. This result implies that the proposed calibrated controller effectively reaches the desired configurations by estimating the hysteresis of the manipulator. Applying this method in real surgical scenarios has the potential to enhance control precision and improve surgical performance.
Graph Neural Networks (GNNs) are a large class of relational models for graph processing. Recent theoretical studies on the expressive power of GNNs have focused on two issues. On the one hand, it has been proven that GNNs are as powerful as the Weisfeiler-Lehman test (1-WL) in their ability to distinguish graphs. Moreover, it has been shown that the equivalence enforced by 1-WL equals unfolding equivalence. On the other hand, GNNs turned out to be universal approximators on graphs modulo the constraints enforced by 1-WL/unfolding equivalence. However, these results only apply to Static Attributed Undirected Homogeneous Graphs (SAUHG) with node attributes. In contrast, real-life applications often involve a much larger variety of graph types. In this paper, we conduct a theoretical analysis of the expressive power of GNNs for two other graph domains that are particularly interesting in practical applications, namely dynamic graphs and SAUGHs with edge attributes. Dynamic graphs are widely used in modern applications; hence, the study of the expressive capability of GNNs in this domain is essential for practical reasons and, in addition, it requires a new analyzing approach due to the difference in the architecture of dynamic GNNs compared to static ones. On the other hand, the examination of SAUHGs is of particular relevance since they act as a standard form for all graph types: it has been shown that all graph types can be transformed without loss of information to SAUHGs with both attributes on nodes and edges. This paper considers generic GNN models and appropriate 1-WL tests for those domains. Then, the known results on the expressive power of GNNs are extended to the mentioned domains: it is proven that GNNs have the same capability as the 1-WL test, the 1-WL equivalence equals unfolding equivalence and that GNNs are universal approximators modulo 1-WL/unfolding equivalence.
Efficiently capturing consistent and complementary semantic features in a multimodal conversation context is crucial for Multimodal Emotion Recognition in Conversation (MERC). Existing methods mainly use graph structures to model dialogue context semantic dependencies and employ Graph Neural Networks (GNN) to capture multimodal semantic features for emotion recognition. However, these methods are limited by some inherent characteristics of GNN, such as over-smoothing and low-pass filtering, resulting in the inability to learn long-distance consistency information and complementary information efficiently. Since consistency and complementarity information correspond to low-frequency and high-frequency information, respectively, this paper revisits the problem of multimodal emotion recognition in conversation from the perspective of the graph spectrum. Specifically, we propose a Graph-Spectrum-based Multimodal Consistency and Complementary collaborative learning framework GS-MCC. First, GS-MCC uses a sliding window to construct a multimodal interaction graph to model conversational relationships and uses efficient Fourier graph operators to extract long-distance high-frequency and low-frequency information, respectively. Then, GS-MCC uses contrastive learning to construct self-supervised signals that reflect complementarity and consistent semantic collaboration with high and low-frequency signals, thereby improving the ability of high and low-frequency information to reflect real emotions. Finally, GS-MCC inputs the collaborative high and low-frequency information into the MLP network and softmax function for emotion prediction. Extensive experiments have proven the superiority of the GS-MCC architecture proposed in this paper on two benchmark data sets.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.