亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With ubiquitous exposure of AI systems today, we believe AI development requires crucial considerations to be deemed trustworthy. While the potential of AI systems is bountiful, though, is still unknown-as are their risks. In this work, we offer a brief, high-level overview of societal impacts of AI systems. To do so, we highlight the requirement of multi-disciplinary governance and convergence throughout its lifecycle via critical systemic examinations (e.g., energy consumption), and later discuss induced effects on the environment (i.e., carbon footprint) and its users (i.e., social development). In particular, we consider these impacts from a multi-disciplinary perspective: computer science, sociology, environmental science, and so on to discuss its inter-connected societal risks and inability to simultaneously satisfy aspects of well-being. Therefore, we accentuate the necessity of holistically addressing pressing concerns of AI systems from a socioethical impact assessment perspective to explicate its harmful societal effects to truly enable humanity-centered Trustworthy AI.

相關內容

Understanding emergent abilities, such as in-context learning (ICL) and chain-of-thought (CoT) prompting in large language models (LLMs), is of utmost importance. This importance stems not only from the better utilization of these capabilities across various tasks, but also from the proactive identification and mitigation of potential risks, including concerns of truthfulness, bias, and toxicity, that may arise alongside these capabilities. In this paper, we present a thorough survey on the interpretation and analysis of emergent abilities of LLMs. First, we provide a concise introduction to the background and definition of emergent abilities. Then, we give an overview of advancements from two perspectives: 1) a macro perspective, emphasizing studies on the mechanistic interpretability and delving into the mathematical foundations behind emergent abilities; and 2) a micro-perspective, concerning studies that focus on empirical interpretability by examining factors associated with these abilities. We conclude by highlighting the challenges encountered and suggesting potential avenues for future research. We believe that our work establishes the basis for further exploration into the interpretation of emergent abilities.

Since the rise of neural natural-language-to-code models (NL->Code) that can generate long expressions and statements rather than a single next-token, one of the major problems has been reliably evaluating their generated output. In this paper, we propose CodeBERTScore: an evaluation metric for code generation, which builds on BERTScore (Zhang et al., 2020). Instead of encoding only the generated tokens as in BERTScore, CodeBERTScore also encodes the natural language input preceding the generated code, thus modeling the consistency between the generated code and its given natural language context as well. We perform an extensive evaluation of CodeBERTScore across four programming languages. We find that CodeBERTScore achieves a higher correlation with human preference and with functional correctness than all existing metrics. That is, generated code that receives a higher score by CodeBERTScore is more likely to be preferred by humans, as well as to function correctly when executed. We release five language-specific pretrained models to use with our publicly available code. Our language-specific models have been downloaded more than 1,000,000 times from the Huggingface Hub. Our code and data are available at //github.com/neulab/code-bert-score

Efforts in levering Artificial Intelligence (AI) in decision support systems have disproportionately focused on technological advancements, often overlooking the alignment between algorithmic outputs and human expectations. To address this, explainable AI promotes AI development from a more human-centered perspective. Determining what information AI should provide to aid humans is vital, however, how the information is presented, e. g., the sequence of recommendations and the solicitation of interpretations, is equally crucial. This motivates the need to more precisely study Human-AI interaction as a pivotal component of AI-based decision support. While several empirical studies have evaluated Human-AI interactions in multiple application domains in which interactions can take many forms, there is not yet a common vocabulary to describe human-AI interaction protocols. To address this gap, we describe the results of a systematic review of the AI-assisted decision making literature, analyzing 105 selected articles, which grounds the introduction of a taxonomy of interaction patterns that delineate various modes of human-AI interactivity. We find that current interactions are dominated by simplistic collaboration paradigms and report comparatively little support for truly interactive functionality. Our taxonomy serves as a valuable tool to understand how interactivity with AI is currently supported in decision-making contexts and foster deliberate choices of interaction designs.

Confidence intervals (CI) for the IPW estimators of the ATT and ATO might not always yield conservative CIs when using the 'robust sandwich variance' estimator. In this manuscript, we identify scenarios where this variance estimator can be employed to derive conservative CIs. Specifically, for the ATT, a conservative CI can be derived when there's a homogeneous treatment effect or the interaction effect surpasses the effect from the covariates alone. For the ATO, conservative CIs can be derived under certain conditions, such as when there are homogeneous treatment effects, when there exists significant treatment-confounder interactions, or when there's a large number of members in the control groups.

With the development of trustworthy Federated Learning (FL), the requirement of implementing right to be forgotten gives rise to the area of Federated Unlearning (FU). Comparing to machine unlearning, a major challenge of FU lies in the decentralized and privacy-preserving nature of FL, in which clients jointly train a global model without sharing their raw data, making it substantially more intricate to selectively unlearn specific information. In that regard, many efforts have been made to tackle the challenges of FU and have achieved significant progress. In this paper, we present a comprehensive survey of FU. Specially, we provide the existing algorithms, objectives, evaluation metrics, and identify some challenges of FU. By reviewing and comparing some studies, we summarize them into a taxonomy for various schemes, potential applications and future directions.

We propose a self-correction mechanism for Large Language Models (LLMs) to mitigate issues such as toxicity and fact hallucination. This method involves refining model outputs through an ensemble of critics and the model's own feedback. Drawing inspiration from human behavior, we explore whether LLMs can emulate the self-correction process observed in humans who often engage in self-reflection and seek input from others to refine their understanding of complex topics. Our approach is model-agnostic and can be applied across various domains to enhance trustworthiness by addressing fairness, bias, and robustness concerns. We consistently observe performance improvements in LLMs for reducing toxicity and correcting factual errors.

Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose existential risks. This paper reviews the evidence for existential risks from AI via misalignment, where AI systems develop goals misaligned with human values, and power-seeking, where misaligned AIs actively seek power. The review examines empirical findings, conceptual arguments and expert opinion relating to specification gaming, goal misgeneralization, and power-seeking. The current state of the evidence is found to be concerning but inconclusive regarding the existence of extreme forms of misaligned power-seeking. Strong empirical evidence of specification gaming combined with strong conceptual evidence for power-seeking make it difficult to dismiss the possibility of existential risk from misaligned power-seeking. On the other hand, to date there are no public empirical examples of misaligned power-seeking in AI systems, and so arguments that future systems will pose an existential risk remain somewhat speculative. Given the current state of the evidence, it is hard to be extremely confident either that misaligned power-seeking poses a large existential risk, or that it poses no existential risk. The fact that we cannot confidently rule out existential risk from AI via misaligned power-seeking is cause for serious concern.

In this paper, we comprehensively investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation and its subsequent impact on information-intensive applications, particularly Open-Domain Question Answering (ODQA) systems. We establish a threat model and simulate potential misuse scenarios, both unintentional and intentional, to assess the extent to which LLMs can be utilized to produce misinformation. Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of ODQA systems. To mitigate the harm caused by LLM-generated misinformation, we explore three defense strategies: prompting, misinformation detection, and majority voting. While initial results show promising trends for these defensive strategies, much more work needs to be done to address the challenge of misinformation pollution. Our work highlights the need for further research and interdisciplinary collaboration to address LLM-generated misinformation and to promote responsible use of LLMs.

In this short consensus paper, we outline risks from upcoming, advanced AI systems. We examine large-scale social harms and malicious uses, as well as an irreversible loss of human control over autonomous AI systems. In light of rapid and continuing AI progress, we propose priorities for AI R&D and governance.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司