Large language models (LLMs) are shaping a new user interface (UI) paradigm in writing tools by enabling users to generate text through prompts. This paradigm shifts some creative control from the user to the system, thereby diminishing the user's authorship and autonomy in the writing process. To restore autonomy, we introduce Textfocals, a UI prototype designed to investigate a human-centered approach that emphasizes the user's role in writing. Textfocals supports the writing process by providing LLM-generated summaries, questions, and advice (i.e., LLM views) in a sidebar of a text editor, encouraging reflection and self-driven revision in writing without direct text generation. Textfocals' UI affordances, including contextually adaptive views and scaffolding for prompt selection and customization, offer a novel way to interact with LLMs where users maintain full authorship of their writing. A formative user study with Textfocals showed promising evidence that this approach might help users develop underdeveloped ideas, cater to the rhetorical audience, and clarify their writing. However, the study also showed interaction design challenges related to document navigation and scoping, prompt engineering, and context management. Our work highlights the breadth of the design space of writing support interfaces powered by generative AI that maintain authorship integrity.
Large language models (LLMs) have achieved superior performance in powering text-based AI agents, endowing them with decision-making and reasoning abilities akin to humans. Concurrently, there is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain. This extension enables AI agents to interpret and respond to diverse multimodal user queries, thereby handling more intricate and nuanced tasks. In this paper, we conduct a systematic review of LLM-driven multimodal agents, which we refer to as large multimodal agents ( LMAs for short). First, we introduce the essential components involved in developing LMAs and categorize the current body of research into four distinct types. Subsequently, we review the collaborative frameworks integrating multiple LMAs , enhancing collective efficacy. One of the critical challenges in this field is the diverse evaluation methods used across existing studies, hindering effective comparison among different LMAs . Therefore, we compile these evaluation methodologies and establish a comprehensive framework to bridge the gaps. This framework aims to standardize evaluations, facilitating more meaningful comparisons. Concluding our review, we highlight the extensive applications of LMAs and propose possible future research directions. Our discussion aims to provide valuable insights and guidelines for future research in this rapidly evolving field. An up-to-date resource list is available at //github.com/jun0wanan/awesome-large-multimodal-agents.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.
Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.
Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.