Domain adaptation (DA) benefits from the rigorous theoretical works that study its insightful characteristics and various aspects, e.g., learning domain-invariant representations and its trade-off. However, it seems not the case for the multiple source DA and domain generalization (DG) settings which are remarkably more complicated and sophisticated due to the involvement of multiple source domains and potential unavailability of target domain during training. In this paper, we develop novel upper-bounds for the target general loss which appeal to us to define two kinds of domain-invariant representations. We further study the pros and cons as well as the trade-offs of enforcing learning each domain-invariant representation. Finally, we conduct experiments to inspect the trade-off of these representations for offering practical hints regarding how to use them in practice and explore other interesting properties of our developed theory.
Studies of active learning traditionally assume the target and source data stem from a single domain. However, in realistic applications, practitioners often require active learning with multiple sources of out-of-distribution data, where it is unclear a priori which data sources will help or hurt the target domain. We survey a wide variety of techniques in active learning (AL), domain shift detection (DS), and multi-domain sampling to examine this challenging setting for question answering and sentiment analysis. We ask (1) what family of methods are effective for this task? And, (2) what properties of selected examples and domains achieve strong results? Among 18 acquisition functions from 4 families of methods, we find H- Divergence methods, and particularly our proposed variant DAL-E, yield effective results, averaging 2-3% improvements over the random baseline. We also show the importance of a diverse allocation of domains, as well as room-for-improvement of existing methods on both domain and example selection. Our findings yield the first comprehensive analysis of both existing and novel methods for practitioners faced with multi-domain active learning for natural language tasks.
We study the problem of learning representations that are private yet informative, i.e., provide information about intended "ally" targets while hiding sensitive "adversary" attributes. We propose Exclusion-Inclusion Generative Adversarial Network (EIGAN), a generalized private representation learning (PRL) architecture that accounts for multiple ally and adversary attributes unlike existing PRL solutions. While centrally-aggregated dataset is a prerequisite for most PRL techniques, data in real-world is often siloed across multiple distributed nodes unwilling to share the raw data because of privacy concerns. We address this practical constraint by developing D-EIGAN, the first distributed PRL method that learns representations at each node without transmitting the source data. We theoretically analyze the behavior of adversaries under the optimal EIGAN and D-EIGAN encoders and the impact of dependencies among ally and adversary tasks on the optimization objective. Our experiments on various datasets demonstrate the advantages of EIGAN in terms of performance, robustness, and scalability. In particular, EIGAN outperforms the previous state-of-the-art by a significant accuracy margin (47% improvement), and D-EIGAN's performance is consistently on par with EIGAN under different network settings.
Federated Learning (FL) has shown great potential as a privacy-preserving solution to learning from decentralized data that are only accessible to end devices (i.e., clients). In many scenarios, however, a large proportion of the clients are probably in possession of low-quality data that are biased, noisy or even irrelevant. As a result, they could significantly slow down the convergence of the global model we aim to build and also compromise its quality. In light of this, we propose FedProf, a novel algorithm for optimizing FL under such circumstances without breaching data privacy. The key of our approach is a distributional representation profiling and matching scheme that uses the global model to dynamically profile data representations and allows for low-cost, lightweight representation matching. Based on the scheme we adaptively score each client and adjust its participation probability so as to mitigate the impact of low-value clients on the training process. We have conducted extensive experiments on public datasets using various FL settings. The results show that the selective behaviour of our algorithm leads to a significant reduction in the number of communication rounds and the amount of time (up to 2.4x speedup) for the global model to converge and also provides accuracy gain.
Curriculum learning (CL) is a training strategy that trains a machine learning model from easier data to harder data, which imitates the meaningful learning order in human curricula. As an easy-to-use plug-in, the CL strategy has demonstrated its power in improving the generalization capacity and convergence rate of various models in a wide range of scenarios such as computer vision and natural language processing etc. In this survey article, we comprehensively review CL from various aspects including motivations, definitions, theories, and applications. We discuss works on curriculum learning within a general CL framework, elaborating on how to design a manually predefined curriculum or an automatic curriculum. In particular, we summarize existing CL designs based on the general framework of Difficulty Measurer+Training Scheduler and further categorize the methodologies for automatic CL into four groups, i.e., Self-paced Learning, Transfer Teacher, RL Teacher, and Other Automatic CL. We also analyze principles to select different CL designs that may benefit practical applications. Finally, we present our insights on the relationships connecting CL and other machine learning concepts including transfer learning, meta-learning, continual learning and active learning, etc., then point out challenges in CL as well as potential future research directions deserving further investigations.
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
We propose a way to learn visual features that are compatible with previously computed ones even when they have different dimensions and are learned via different neural network architectures and loss functions. Compatible means that, if such features are used to compare images, then "new" features can be compared directly to "old" features, so they can be used interchangeably. This enables visual search systems to bypass computing new features for all previously seen images when updating the embedding models, a process known as backfilling. Backward compatibility is critical to quickly deploy new embedding models that leverage ever-growing large-scale training datasets and improvements in deep learning architectures and training methods. We propose a framework to train embedding models, called backward-compatible training (BCT), as a first step towards backward compatible representation learning. In experiments on learning embeddings for face recognition, models trained with BCT successfully achieve backward compatibility without sacrificing accuracy, thus enabling backfill-free model updates of visual embeddings.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.
Meta learning is a promising solution to few-shot learning problems. However, existing meta learning methods are restricted to the scenarios where training and application tasks share the same out-put structure. To obtain a meta model applicable to the tasks with new structures, it is required to collect new training data and repeat the time-consuming meta training procedure. This makes them inefficient or even inapplicable in learning to solve heterogeneous few-shot learning tasks. We thus develop a novel and principled HierarchicalMeta Learning (HML) method. Different from existing methods that only focus on optimizing the adaptability of a meta model to similar tasks, HML also explicitly optimizes its generalizability across heterogeneous tasks. To this end, HML first factorizes a set of similar training tasks into heterogeneous ones and trains the meta model over them at two levels to maximize adaptation and generalization performance respectively. The resultant model can then directly generalize to new tasks. Extensive experiments on few-shot classification and regression problems clearly demonstrate the superiority of HML over fine-tuning and state-of-the-art meta learning approaches in terms of generalization across heterogeneous tasks.
As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains. In some domains, like bioinformatics and robotics, it is very difficult to construct a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation, which limits its development. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i.d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data. This survey focuses on reviewing the current researches of transfer learning by using deep neural network and its applications. We defined deep transfer learning, category and review the recent research works based on the techniques used in deep transfer learning.