Sonification is a data visualization technique which expresses data attributes via psychoacoustic parameters, which are non-speech audio signals used to convey information. This paper investigates the binary estimation of cognitive load induced by psychoacoustic parameters conveying the focus level of an astronomical image via Electroencephalogram (EEG) embeddings. Employing machine learning and deep learning methodologies, we demonstrate that EEG signals are reliable for (a) binary estimation of cognitive load, (b) isolating easy vs difficult visual-to-auditory perceptual mappings, and (c) capturing perceptual similarities among psychoacoustic parameters. Our key findings reveal that (1) EEG embeddings can reliably measure cognitive load, achieving a peak F1-score of 0.98; (2) Extreme focus levels are easier to detect via auditory mappings than intermediate ones, and (3) psychoacoustic parameters inducing comparable cognitive load levels tend to generate similar EEG encodings.
Fusing information from different modalities can enhance data analysis tasks, including clustering. However, existing multi-view clustering (MVC) solutions are limited to specific domains or rely on a suboptimal and computationally demanding two-stage procedure of representation and clustering. We propose an end-to-end deep learning-based MVC framework for general data (image, tabular, etc.). Our approach involves learning meaningful fused data representations with a novel permutation-based canonical correlation objective. Concurrently, we learn cluster assignments by identifying consistent pseudo-labels across multiple views. We demonstrate the effectiveness of our model using ten MVC benchmark datasets. Theoretically, we show that our model approximates the supervised linear discrimination analysis (LDA) representation. Additionally, we provide an error bound induced by false-pseudo label annotations.
Image enhancement algorithms are very useful for real world computer vision tasks where image resolution is often physically limited by the sensor size. While state-of-the-art deep neural networks show impressive results for image enhancement, they often struggle to enhance real-world images. In this work, we tackle a real-world setting: inpainting of images from Dunhuang caves. The Dunhuang dataset consists of murals, half of which suffer from corrosion and aging. These murals feature a range of rich content, such as Buddha statues, bodhisattvas, sponsors, architecture, dance, music, and decorative patterns designed by different artists spanning ten centuries, which makes manual restoration challenging. We modify two different existing methods (CAR, HINet) that are based upon state-of-the-art (SOTA) super resolution and deblurring networks. We show that those can successfully inpaint and enhance these deteriorated cave paintings. We further show that a novel combination of CAR and HINet, resulting in our proposed inpainting network (ARIN), is very robust to external noise, especially Gaussian noise. To this end, we present a quantitative and qualitative comparison of our proposed approach with existing SOTA networks and winners of the Dunhuang challenge. One of the proposed methods HINet) represents the new state of the art and outperforms the 1st place of the Dunhuang Challenge, while our combination ARIN, which is robust to noise, is comparable to the 1st place. We also present and discuss qualitative results showing the impact of our method for inpainting on Dunhuang cave images.
Finding target persons in full scene images with a query of text description has important practical applications in intelligent video surveillance.However, different from the real-world scenarios where the bounding boxes are not available, existing text-based person retrieval methods mainly focus on the cross modal matching between the query text descriptions and the gallery of cropped pedestrian images. To close the gap, we study the problem of text-based person search in full images by proposing a new end-to-end learning framework which jointly optimize the pedestrian detection, identification and visual-semantic feature embedding tasks. To take full advantage of the query text, the semantic features are leveraged to instruct the Region Proposal Network to pay more attention to the text-described proposals. Besides, a cross-scale visual-semantic embedding mechanism is utilized to improve the performance. To validate the proposed method, we collect and annotate two large-scale benchmark datasets based on the widely adopted image-based person search datasets CUHK-SYSU and PRW. Comprehensive experiments are conducted on the two datasets and compared with the baseline methods, our method achieves the state-of-the-art performance.
To achieve high-accuracy manipulation in the presence of unknown disturbances, we propose two novel efficient and robust motion control schemes for high-dimensional robot manipulators. Both controllers incorporate an unknown system dynamics estimator (USDE) to estimate disturbances without requiring acceleration signals and the inverse of inertia matrix. Then, based on the USDE framework, an adaptive-gain controller and a super-twisting sliding mode controller are designed to speed up the convergence of tracking errors and strengthen anti-perturbation ability. The former aims to enhance feedback portions through error-driven control gains, while the latter exploits finite-time convergence of discontinuous switching terms. We analyze the boundedness of control signals and the stability of the closed-loop system in theory, and conduct real hardware experiments on a robot manipulator with seven degrees of freedom (DoF). Experimental results verify the effectiveness and improved performance of the proposed controllers, and also show the feasibility of implementation on high-dimensional robots.
Aligning lattices based on local stress distribution is crucial for achieving exceptional structural stiffness. However, this aspect has primarily been investigated under a single load condition, where stress in 2D can be described by two orthogonal principal stress directions. In this paper, we introduce a novel approach for designing and optimizing triangular lattice structures to accommodate multiple loading conditions, which means multiple stress fields. Our method comprises two main steps: homogenization-based topology optimization and geometry-based de-homogenization. To ensure the geometric regularity of triangular lattices, we propose a simplified version of the general rank-$3$ laminate and parameterize the design domain using equilateral triangles with unique thickness per edge. During optimization, the thicknesses and orientation of each equilateral triangle are adjusted based on the homogenized properties of triangular lattices. Our numerical findings demonstrate that this proposed simplification results in only a slight decrease in stiffness, while achieving triangular lattice structures with a compelling geometric regularity. In geometry-based de-homogenization, we adopt a field-aligned triangulation approach to generate a globally consistent triangle mesh, with each triangle oriented according to the optimized orientation field. Our approach for handling multiple loading conditions, akin to de-homogenization techniques for single loading conditions, yields highly detailed, optimized, spatially varying lattice structures. The method is computationally efficient, as simulations and optimizations are conducted at a low-resolution discretization of the design domain. Furthermore, since our approach is geometry-based, obtained structures are encoded into a compact geometric format that facilitates downstream operations such as editing and fabrication.
With the incorporation of the UNet architecture, diffusion probabilistic models have become a dominant force in image generation tasks. One key design in UNet is the skip connections between the encoder and decoder blocks. Although skip connections have been shown to improve training stability and model performance, we reveal that such shortcuts can be a limiting factor for the complexity of the transformation. As the sampling steps decrease, the generation process and the role of the UNet get closer to the push-forward transformations from Gaussian distribution to the target, posing a challenge for the network's complexity. To address this challenge, we propose Skip-Tuning, a simple yet surprisingly effective training-free tuning method on the skip connections. Our method can achieve 100% FID improvement for pretrained EDM on ImageNet 64 with only 19 NFEs (1.75), breaking the limit of ODE samplers regardless of sampling steps. Surprisingly, the improvement persists when we increase the number of sampling steps and can even surpass the best result from EDM-2 (1.58) with only 39 NFEs (1.57). Comprehensive exploratory experiments are conducted to shed light on the surprising effectiveness. We observe that while Skip-Tuning increases the score-matching losses in the pixel space, the losses in the feature space are reduced, particularly at intermediate noise levels, which coincide with the most effective range accounting for image quality improvement.
The ability to understand visual concepts and replicate and compose these concepts from images is a central goal for computer vision. Recent advances in text-to-image (T2I) models have lead to high definition and realistic image quality generation by learning from large databases of images and their descriptions. However, the evaluation of T2I models has focused on photorealism and limited qualitative measures of visual understanding. To quantify the ability of T2I models in learning and synthesizing novel visual concepts (a.k.a. personalized T2I), we introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts, and 33K composite text prompts. Along with the dataset, we propose an evaluation metric, Concept Confidence Deviation (CCD), that uses the confidence of oracle concept classifiers to measure the alignment between concepts generated by T2I generators and concepts contained in target images. We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions. Our human study shows that CCD is highly correlated with human understanding of concepts. Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome. The data, code, and interactive demo is available at: //conceptbed.github.io/
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.