Foundation models have achieved remarkable results in 2D and language tasks like image segmentation, object detection, and visual-language understanding. However, their potential to enrich 3D scene representation learning is largely untapped due to the existence of the domain gap. In this work, we propose an innovative methodology called Bridge3D to address this gap by pre-training 3D models using features, semantic masks, and captions sourced from foundation models. Specifically, our method employs semantic masks from foundation models to guide the masking and reconstruction process for the masked autoencoder, enabling more focused attention on foreground representations. Moreover, we bridge the 3D-text gap at the scene level using image captioning foundation models, thereby facilitating scene-level knowledge distillation. We further extend this bridging effort by introducing an innovative object-level knowledge distillation method that harnesses highly accurate object-level masks and semantic text data from foundation models. Our methodology significantly surpasses the performance of existing state-of-the-art methods in 3D object detection and semantic segmentation tasks. For instance, on the ScanNet dataset, Bridge3D improves the baseline by a notable margin of 6.3%. Code will be available at: //github.com/Zhimin-C/Bridge3D
Recent text-conditioned image generation models have demonstrated an exceptional capacity to produce diverse and creative imagery with high visual quality. However, when pre-trained on billion-sized datasets randomly collected from the Internet, where potential biased human preferences exist, these models tend to produce images with common and recurring stereotypes, particularly for certain racial groups. In this paper, we conduct an initial analysis of the publicly available Stable Diffusion model and its derivatives, highlighting the presence of racial stereotypes. These models often generate distorted or biased images for certain racial groups, emphasizing stereotypical characteristics. To address these issues, we propose a framework called "RS-Corrector", designed to establish an anti-stereotypical preference in the latent space and update the latent code for refined generated results. The correction process occurs during the inference stage without requiring fine-tuning of the original model. Extensive empirical evaluations demonstrate that the introduced \themodel effectively corrects the racial stereotypes of the well-trained Stable Diffusion model while leaving the original model unchanged.
Large language models have shown impressive results for multi-hop mathematical reasoning when the input question is only textual. Many mathematical reasoning problems, however, contain both text and image. With the ever-increasing adoption of vision language models (VLMs), understanding their reasoning abilities for such problems is crucial. In this paper, we evaluate the reasoning capabilities of VLMs along various axes through the lens of geometry problems. We procedurally create a synthetic dataset of geometry questions with controllable difficulty levels along multiple axes, thus enabling a systematic evaluation. The empirical results obtained using our benchmark for state-of-the-art VLMs indicate that these models are not as capable in subjects like geometry (and, by generalization, other topics requiring similar reasoning) as suggested by previous benchmarks. This is made especially clear by the construction of our benchmark at various depth levels, since solving higher-depth problems requires long chains of reasoning rather than additional memorized knowledge. We release the dataset for further research in this area.
Developing robust artificial intelligence (AI) models that generalize well to unseen datasets is challenging and usually requires large and variable datasets, preferably from multiple institutions. In federated learning (FL), a model is trained collaboratively at numerous sites that hold local datasets without exchanging them. So far, the impact of training strategy, i.e., local versus collaborative, on the diagnostic on-domain and off-domain performance of AI models interpreting chest radiographs has not been assessed. Consequently, using 610,000 chest radiographs from five institutions across the globe, we assessed diagnostic performance as a function of training strategy (i.e., local vs. collaborative), network architecture (i.e., convolutional vs. transformer-based), generalization performance (i.e., on-domain vs. off-domain), imaging finding (i.e., cardiomegaly, pleural effusion, pneumonia, atelectasis, consolidation, pneumothorax, and no abnormality), dataset size (i.e., from n=18,000 to 213,921 radiographs), and dataset diversity. Large datasets not only showed minimal performance gains with FL but, in some instances, even exhibited decreases. In contrast, smaller datasets revealed marked improvements. Thus, on-domain performance was mainly driven by training data size. However, off-domain performance leaned more on training diversity. When trained collaboratively across diverse external institutions, AI models consistently surpassed models trained locally for off-domain tasks, emphasizing FL's potential in leveraging data diversity. In conclusion, FL can bolster diagnostic privacy, reproducibility, and off-domain reliability of AI models and, potentially, optimize healthcare outcomes.
Graphic designers often get inspiration through the recombination of references. Our formative study (N=6) reveals that graphic designers focus on conceptual keywords during this process, and want support for discovering the keywords, expanding them, and exploring diverse recombination options of them, while still having room for their creativity. We propose CreativeConnect, a system with generative AI pipelines that helps users discover useful elements from the reference image using keywords, recommends relevant keywords, generates diverse recombination options with user-selected keywords, and shows recombinations as sketches with text descriptions. Our user study (N=16) showed that CreativeConnect helped users discover keywords from the reference and generate multiple ideas based on them, ultimately helping users produce more design ideas and higher self-reported creativity, compared to the baseline system without generative pipelines. While CreativeConnect was effective in ideation, we discussed how CreativeConnect can be extended to support other types of tasks in creativity support.
We introduce SkipAnalyzer, a large language model (LLM)-powered tool for static code analysis. SkipAnalyzer has three components: 1) an LLM-based static bug detector that scans source code and reports specific types of bugs, 2) an LLM-based false-positive filter that can identify false-positive bugs in the results of static bug detectors (e.g., the result of step 1) to improve detection accuracy, and 3) an LLM-based patch generator that can generate patches for the detected bugs above. As a proof-of-concept, SkipAnalyzer is built on ChatGPT, which has exhibited outstanding performance in various software engineering tasks. To evaluate SkipAnalyzer, we focus on two types of typical and critical bugs that are targeted by static bug detection, i.e., Null Dereference and Resource Leak as subjects. We employ Infer to aid the gathering of these two bug types from 10 open-source projects. Consequently, our experiment dataset contains 222 instances of Null Dereference bugs and 46 instances of Resource Leak bugs. Our study demonstrates that SkipAnalyzer achieves remarkable performance in the mentioned static analysis tasks, including bug detection, false-positive warning removal, and bug repair. In static bug detection, SkipAnalyzer achieves accuracy values of up to 68.37% for detecting Null Dereference bugs and 76.95% for detecting Resource Leak bugs, improving the precision of the current leading bug detector, Infer, by 12.86% and 43.13%, respectively. For removing false-positive warnings, SkipAnalyzer can reach a precision of up to 93.88% for Null Dereference bugs and 63.33% for Resource Leak bugs. Additionally, SkipAnalyzer surpasses state-of-the-art false-positive warning removal tools. Furthermore, in bug repair, SkipAnalyzer can generate syntactically correct patches to fix its detected bugs with a success rate of up to 97.30%.
While instructions fine-tuning of large language models (LLMs) has been proven to enhance performance across various applications, the influence of the instruction dataset mixture on LLMs has not been thoroughly explored. In this study, we classify instructions into three main types: NLP downstream tasks, coding, and general chatting, and investigate their impact on LLMs. Our findings reveal that specific types of instructions are more beneficial for particular uses, while it may cause harms to other aspects, emphasizing the importance of meticulously designing the instruction mixture to maximize model performance. This study sheds light on the instruction mixture and paves the way for future research.
The Transformer-based models with the multi-head self-attention mechanism are widely used in natural language processing, and provide state-of-the-art results. While the pre-trained language backbones are shown to implicitly capture certain linguistic knowledge, explicitly incorporating structure-aware features can bring about further improvement on the downstream tasks. However, such enhancement often requires additional neural components and increases training parameter size. In this work, we investigate the attention head selection and manipulation strategy for feature injection from a network pruning perspective, and conduct a case study on dialogue summarization. We first rank attention heads in a Transformer-based summarizer with layer-wise importance. We then select the underused heads through extensive analysis, and inject structure-aware features by manipulating the selected heads. Experimental results show that the importance-based head selection is effective for feature injection, and dialogue summarization can be improved by incorporating coreference information via head manipulation.
Content-based image retrieval (CBIR) systems have emerged as crucial tools in the field of computer vision, allowing for image search based on visual content rather than relying solely on metadata. This survey paper presents a comprehensive overview of CBIR, emphasizing its role in object detection and its potential to identify and retrieve visually similar images based on content features. Challenges faced by CBIR systems, including the semantic gap and scalability, are discussed, along with potential solutions. It elaborates on the semantic gap, which arises from the disparity between low-level features and high-level semantic concepts, and explores approaches to bridge this gap. One notable solution is the integration of relevance feedback (RF), empowering users to provide feedback on retrieved images and refine search results iteratively. The survey encompasses long-term and short-term learning approaches that leverage RF for enhanced CBIR accuracy and relevance. These methods focus on weight optimization and the utilization of active learning algorithms to select samples for training classifiers. Furthermore, the paper investigates machine learning techniques and the utilization of deep learning and convolutional neural networks to enhance CBIR performance. This survey paper plays a significant role in advancing the understanding of CBIR and RF techniques. It guides researchers and practitioners in comprehending existing methodologies, challenges, and potential solutions while fostering knowledge dissemination and identifying research gaps. By addressing future research directions, it sets the stage for advancements in CBIR that will enhance retrieval accuracy, usability, and effectiveness in various application domains.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.