亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Algorithmic recourse -- providing recommendations to those affected negatively by the outcome of an algorithmic system on how they can take action and change that outcome -- has gained attention as a means of giving persons agency in their interactions with artificial intelligence (AI) systems. Recent work has shown that even if an AI decision-making classifier is ``fair'' (according to some reasonable criteria), recourse itself may be unfair due to differences in the initial circumstances of individuals, compounding disparities for marginalized populations and requiring them to exert more effort than others. There is a need to define more methods and metrics for evaluating fairness in recourse that span a range of normative views of the world, and specifically those that take into account time. Time is a critical element in recourse because the longer it takes an individual to act, the more the setting may change due to model or data drift. This paper seeks to close this research gap by proposing two notions of fairness in recourse that are in normative alignment with substantive equality of opportunity, and that consider time. The first considers the (often repeated) effort individuals exert per successful recourse event, and the second considers time per successful recourse event. Building upon an agent-based framework for simulating recourse, this paper demonstrates how much effort is needed to overcome disparities in initial circumstances. We then proposes an intervention to improve the fairness of recourse by rewarding effort, and compare it to existing strategies.

相關內容

Neural algorithmic reasoning is an emerging research direction that endows neural networks with the ability to mimic algorithmic executions step-by-step. A common paradigm in existing designs involves the use of historical embeddings in predicting the results of future execution steps. Our observation in this work is that such historical dependence intrinsically contradicts the Markov nature of algorithmic reasoning tasks. Based on this motivation, we present our ForgetNet, which does not use historical embeddings and thus is consistent with the Markov nature of the tasks. To address challenges in training ForgetNet at early stages, we further introduce G-ForgetNet, which uses a gating mechanism to allow for the selective integration of historical embeddings. Such an enhanced capability provides valuable computational pathways during the model's early training phase. Our extensive experiments, based on the CLRS-30 algorithmic reasoning benchmark, demonstrate that both ForgetNet and G-ForgetNet achieve better generalization capability than existing methods. Furthermore, we investigate the behavior of the gating mechanism, highlighting its degree of alignment with our intuitions and its effectiveness for robust performance.

Bayesian deep learning and conformal prediction are two methods that have been used to convey uncertainty and increase safety in machine learning systems. We focus on combining Bayesian deep learning with split conformal prediction and how this combination effects out-of-distribution coverage; particularly in the case of multiclass image classification. We suggest that if the model is generally underconfident on the calibration set, then the resultant conformal sets may exhibit worse out-of-distribution coverage compared to simple predictive credible sets. Conversely, if the model is overconfident on the calibration set, the use of conformal prediction may improve out-of-distribution coverage. We evaluate prediction sets as a result of combining split conformal methods and neural networks trained with (i) stochastic gradient descent, (ii) deep ensembles, and (iii) mean-field variational inference. Our results suggest that combining Bayesian deep learning models with split conformal prediction can, in some cases, cause unintended consequences such as reducing out-of-distribution coverage.

The process of meaning composition, wherein smaller units like morphemes or words combine to form the meaning of phrases and sentences, is essential for human sentence comprehension. Despite extensive neurolinguistic research into the brain regions involved in meaning composition, a computational metric to quantify the extent of composition is still lacking. Drawing on the key-value memory interpretation of transformer feed-forward network blocks, we introduce the Composition Score, a novel model-based metric designed to quantify the degree of meaning composition during sentence comprehension. Experimental findings show that this metric correlates with brain clusters associated with word frequency, structural processing, and general sensitivity to words, suggesting the multifaceted nature of meaning composition during human sentence comprehension.

An asymptotic theory is established for linear functionals of the predictive function given by kernel ridge regression, when the reproducing kernel Hilbert space is equivalent to a Sobolev space. The theory covers a wide variety of linear functionals, including point evaluations, evaluation of derivatives, $L_2$ inner products, etc. We establish the upper and lower bounds of the estimates and their asymptotic normality. It is shown that $\lambda\sim n^{-1}$ is the universal optimal order of magnitude for the smoothing parameter to balance the variance and the worst-case bias. The theory also implies that the optimal $L_\infty$ error of kernel ridge regression can be attained under the optimal smoothing parameter $\lambda\sim n^{-1}\log n$. These optimal rates for the smoothing parameter differ from the known optimal rate $\lambda\sim n^{-\frac{2m}{2m+d}}$ that minimizes the $L_2$ error of the kernel ridge regression.

The competition complexity of an auction setting is the number of additional bidders needed such that the simple mechanism of selling items separately (with additional bidders) achieves greater revenue than the optimal but complex (randomized, prior-dependent, Bayesian-truthful) optimal mechanism without the additional bidders. Our main result settles the competition complexity of $n$ bidders with additive values over $m < n$ independent items at $\Theta(\sqrt{nm})$. The $O(\sqrt{nm})$ upper bound is due to [BW19], and our main result improves the prior lower bound of $\Omega(\ln n)$ to $\Omega(\sqrt{nm})$. Our main result follows from an explicit construction of a Bayesian IC auction for $n$ bidders with additive values over $m<n$ independent items drawn from the Equal Revenue curve truncated at $\sqrt{nm}$ ($\mathcal{ER}_{\le \sqrt{nm}}$), which achieves revenue that exceeds $\text{SRev}_{n+\sqrt{nm}}(\mathcal{ER}_{\le \sqrt{nm}}^m)$. Along the way, we show that the competition complexity of $n$ bidders with additive values over $m$ independent items is exactly equal to the minimum $c$ such that $\text{SRev}_{n+c}(\mathcal{ER}_{\le p}^m) \geq \text{Rev}_n(\mathcal{ER}_{\le p}^m)$ for all $p$ (that is, some truncated Equal Revenue witnesses the worst-case competition complexity). Interestingly, we also show that the untruncated Equal Revenue curve does not witness the worst-case competition complexity when $n > m$: $\text{SRev}_n(\mathcal{ER}^m) = nm+O_m(\ln (n)) \leq \text{SRev}_{n+O_m(\ln (n))}(\mathcal{ER}^m)$, and therefore our result can only follow by considering all possible truncations.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.

北京阿比特科技有限公司