亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Representing graphs by their homomorphism counts has led to the beautiful theory of homomorphism indistinguishability in recent years. Moreover, homomorphism counts have promising applications in database theory and machine learning, where one would like to answer queries or classify graphs solely based on the representation of a graph $G$ as a finite vector of homomorphism counts from some fixed finite set of graphs to $G$. We study the computational complexity of the arguably most fundamental computational problem associated to these representations, the homomorphism reconstructability problem: given a finite sequence of graphs and a corresponding vector of natural numbers, decide whether there exists a graph $G$ that realises the given vector as the homomorphism counts from the given graphs. We show that this problem yields a natural example of an $\mathsf{NP}^{#\mathsf{P}}$-hard problem, which still can be $\mathsf{NP}$-hard when restricted to a fixed number of input graphs of bounded treewidth and a fixed input vector of natural numbers, or alternatively, when restricted to a finite input set of graphs. We further show that, when restricted to a finite input set of graphs and given an upper bound on the order of the graph $G$ as additional input, the problem cannot be $\mathsf{NP}$-hard unless $\mathsf{P} = \mathsf{NP}$. For this regime, we obtain partial positive results. We also investigate the problem's parameterised complexity and provide fpt-algorithms for the case that a single graph is given and that multiple graphs of the same order with subgraph instead of homomorphism counts are given.

相關內容

Fractional derivatives are a well-studied generalization of integer order derivatives. Naturally, for optimization, it is of interest to understand the convergence properties of gradient descent using fractional derivatives. Convergence analysis of fractional gradient descent is currently limited both in the methods analyzed and the settings analyzed. This paper aims to fill in these gaps by analyzing variations of fractional gradient descent in smooth and convex, smooth and strongly convex, and smooth and non-convex settings. First, novel bounds will be established bridging fractional and integer derivatives. Then, these bounds will be applied to the aforementioned settings to prove $O(1/T)$ convergence for smooth and convex functions and linear convergence for smooth and strongly convex functions. Additionally, we prove $O(1/T)$ convergence for smooth and non-convex functions using an extended notion of smoothness that is more natural for fractional derivatives. Finally, empirical results will be presented on the potential speed up of fractional gradient descent over standard gradient descent as well as the challenges of predicting which will be faster in general.

Despite the practicality of quantile regression (QR), simultaneous estimation of multiple QR curves continues to be challenging. We address this problem by proposing a Bayesian nonparametric framework that generalizes the quantile pyramid by replacing each scalar variate in the quantile pyramid with a stochastic process on a covariate space. We propose a novel approach to show the existence of a quantile pyramid for all quantiles. The process of dependent quantile pyramids allows for non-linear QR and automatically ensures non-crossing of QR curves on the covariate space. Simulation studies document the performance and robustness of our approach. An application to cyclone intensity data is presented.

Modern regex languages have strayed far from well-understood traditional regular expressions: they include features that fundamentally transform the matching problem. In exchange for these features, modern regex engines at times suffer from exponential complexity blowups, a frequent source of denial-of-service vulnerabilities in JavaScript applications. Worse, regex semantics differ across languages, and the impact of these divergences on algorithmic design and worst-case matching complexity has seldom been investigated. This paper provides a novel perspective on JavaScript's regex semantics by identifying a larger-than-previously-understood subset of the language that can be matched with linear time guarantees. In the process, we discover several cases where state-of-the-art algorithms were either wrong (semantically incorrect), inefficient (suffering from superlinear complexity) or excessively restrictive (assuming certain features could not be matched linearly). We introduce novel algorithms to restore correctness and linear complexity. We further advance the state-of-the-art in linear regex matching by presenting the first nonbacktracking algorithms for matching lookarounds in linear time: one supporting captureless lookbehinds in any regex language, and another leveraging a JavaScript property to support unrestricted lookaheads and lookbehinds. Finally, we describe new time and space complexity tradeoffs for regex engines. All of our algorithms are practical: we validated them in a prototype implementation, and some have also been merged in the V8 JavaScript implementation used in Chrome and Node.js.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

北京阿比特科技有限公司