We pioneer a new technique that allows us to prove a multitude of previously open simulations in QBF proof complexity. In particular, we show that extended QBF Frege p-simulates clausal proof systems such as IR-Calculus, IRM-Calculus, Long-Distance Q-Resolution, and Merge Resolution. These results are obtained by taking a technique of Beyersdorff et al. (JACM 2020) that turns strategy extraction into simulation and combining it with new local strategy extraction arguments. This approach leads to simulations that are carried out mainly in propositional logic, with minimal use of the QBF rules. Our proofs therefore provide a new, largely propositional interpretation of the simulated systems. We argue that these results strengthen the case for uniform certification in QBF solving, since many QBF proof systems now fall into place underneath extended QBF Frege.
Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance remains a delicate process. In this light, we present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within BO. At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can improve model-based BO. Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate LLAMBO's efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.
We propose a new method for cloth digitalization. Deviating from existing methods which learn from data captured under relatively casual settings, we propose to learn from data captured in strictly tested measuring protocols, and find plausible physical parameters of the cloths. However, such data is currently absent, so we first propose a new dataset with accurate cloth measurements. Further, the data size is considerably smaller than the ones in current deep learning, due to the nature of the data capture process. To learn from small data, we propose a new Bayesian differentiable cloth model to estimate the complex material heterogeneity of real cloths. It can provide highly accurate digitalization from very limited data samples. Through exhaustive evaluation and comparison, we show our method is accurate in cloth digitalization, efficient in learning from limited data samples, and general in capturing material variations. Code and data are available //github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another. Lack of annotated data prohibits direct inference of 3D semantic priors; instead, current State-of-the-art methods predominantly optimize geometric properties or require varying amounts of manual annotation. To overcome the lack of annotated training data, we distill semantic matches from pre-trained vision models: our method renders the pair of 3D shapes from multiple viewpoints; the resulting renders are then fed into an off-the-shelf image-matching method which leverages a pretrained visual model to produce feature points. This yields semantic correspondences, which can be projected back to the 3D shapes, producing a raw matching that is inaccurate and inconsistent between different viewpoints. These correspondences are refined and distilled into an inter-surface map by a dedicated optimization scheme, which promotes bijectivity and continuity of the output map. We illustrate that our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement. Furthermore, it proves effective in scenarios with high semantic complexity, where objects are non-isometrically related, as well as in situations where they are nearly isometric.
Agents in mixed-motive coordination problems such as Chicken may fail to coordinate on a Pareto-efficient outcome. Safe Pareto improvements (SPIs) were originally proposed to mitigate miscoordination in cases where players lack probabilistic beliefs as to how their delegates will play a game; delegates are instructed to behave so as to guarantee a Pareto improvement on how they would play by default. More generally, SPIs may be defined as transformations of strategy profiles such that all players are necessarily better off under the transformed profile. In this work, we investigate the extent to which SPIs can reduce downsides of miscoordination between expected utility-maximizing agents. We consider games in which players submit computer programs that can condition their decisions on each other's code, and use this property to construct SPIs using programs capable of renegotiation. We first show that under mild conditions on players' beliefs, each player always prefers to use renegotiation. Next, we show that under similar assumptions, each player always prefers to be willing to renegotiate at least to the point at which they receive the lowest payoff they can attain in any efficient outcome. Thus subjectively optimal play guarantees players at least these payoffs, without the need for coordination on specific Pareto improvements. Lastly, we prove that renegotiation does not guarantee players any improvements on this bound.
We demonstrate the superior capabilities of the recently proposed Lorentz quantum computer (LQC) compared to conventional quantum computers. We introduce an associated computational complexity class, bounded-error Lorentz quantum polynomial-time (BLQP), and prove that the complexity class ${\text P}^{\sharp \text{P}}$ is contained within BLQP. We present LQC algorithms that solve in polynomial time the problem of maximum independent set and the problems in the classes of NP, co-NP, PH (polynomial hierarchy), PP (probabilistic polynomial-time), and ${\text P}^{\sharp \text{P}}$. We show that the quantum computing with postselection proposed by Aaronson can be simulated efficiently by LQC, but not vice versa.
Inspired by the concept of fault tolerance quantum computation, this article proposes a framework dubbed Exact Homomorphic Encryption, EHE, enabling exact computations on encrypted data without the need for pre-decryption. The introduction of quantum gates is a critical step for constructing the message encryption and the computation encryption within the framework. Of significance is that both encryptions are respectively accomplished in a multivariate polynomial set generated by quantum gates. Two fundamental traits of quantum gates the invertibility and the noncommutativity, establish the success of EHE. The encrypted computation is exact because its encryption transformation is conducted with invertible gates. In the same vein, decryptions for both an encrypted message and encrypted computation are exact. The second trait of noncommutativity among applied quantum gates brings forth the security for the two encryptions. Toward the message encryption, a plaintext is encoded into a ciphertext via a polynomial set generated by a product of noncommuting gates randomly chosen. In the computation encryption, a desired operation is encoded into an encrypted polynomial set generated by another product of noncommuting gates. The encrypted computation is then the evaluation of the encrypted polynomial set on the ciphertext and is referred to as the cryptovaluation. EHE is not only attainable on quantum computers, but also straightforwardly realizable on traditional computing environments. Surpassing the standard security 2^128 of quantum resilience, both the encryptions further reach a security greater than the suggested threshold 2^1024 and are characterized as hyper quantum-resilient. Thanks to the two essential traits of quantum gates, this framework can be regarded as the initial tangible manifestation of the concept noncommutative cryptography.
Recent work has demonstrated that fine-tuning is a promising approach to `unlearn' concepts from large language models. However, fine-tuning can be expensive, as it requires both generating a set of examples and running iterations of fine-tuning to update the model. In this work, we show that simple guardrail-based approaches such as prompting and filtering can achieve unlearning results comparable to fine-tuning. We recommend that researchers investigate these lightweight baselines when evaluating the performance of more computationally intensive fine-tuning methods. While we do not claim that methods such as prompting or filtering are universal solutions to the problem of unlearning, our work suggests the need for evaluation metrics that can better separate the power of guardrails vs. fine-tuning, and highlights scenarios where guardrails themselves may be advantageous for unlearning, such as in generating examples for fine-tuning or unlearning when only API access is available.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.