Recent work in differential privacy has explored the prospect of combining local randomization with a secure intermediary. Specifically, there are a variety of protocols in the secure shuffle model (where an intermediary randomly permutes messages) as well as the secure aggregation model (where an intermediary adds messages). Most of these protocols are limited to approximate differential privacy. An exception is the shuffle protocol by Ghazi, Golowich, Kumar, Manurangsi, Pagh, and Velingker (arXiv:2002.01919): it computes bounded sums under pure differential privacy. Its additive error is $\tilde{O}(1/\varepsilon^{3/2})$, where $\varepsilon$ is the privacy parameter. In this work, we give a new protocol that ensures $O(1/\varepsilon)$ error under pure differential privacy. We also show how to use it to test uniformity of distributions over $[d]$. The tester's sample complexity has an optimal dependence on $d$. Our work relies on a novel class of secure intermediaries which are of independent interest.
Einmahl, de Haan and Zhou (2016, Journal of the Royal Statistical Society: Series B, 78(1), 31-51) recently introduced a stochastic model that allows for heteroscedasticity of extremes. The model is extended to the situation where the observations are serially dependent, which is crucial for many practical applications. We prove a local limit theorem for a kernel estimator for the scedasis function, and a functional limit theorem for an estimator for the integrated scedasis function. We further prove consistency of a bootstrap scheme that allows to test for the null hypothesis that the extremes are homoscedastic. Finally, we propose an estimator for the extremal index governing the dynamics of the extremes and prove its consistency. All results are illustrated by Monte Carlo simulations. An important intermediate result concerns the sequential tail empirical process under serial dependence.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
Although robust learning and local differential privacy are both widely studied fields of research, combining the two settings is just starting to be explored. We consider the problem of estimating a discrete distribution in total variation from $n$ contaminated data batches under a local differential privacy constraint. A fraction $1-\epsilon$ of the batches contain $k$ i.i.d. samples drawn from a discrete distribution $p$ over $d$ elements. To protect the users' privacy, each of the samples is privatized using an $\alpha$-locally differentially private mechanism. The remaining $\epsilon n $ batches are an adversarial contamination. The minimax rate of estimation under contamination alone, with no privacy, is known to be $\epsilon/\sqrt{k}+\sqrt{d/kn}$, up to a $\sqrt{\log(1/\epsilon)}$ factor. Under the privacy constraint alone, the minimax rate of estimation is $\sqrt{d^2/\alpha^2 kn}$. We show that combining the two constraints leads to a minimax estimation rate of $\epsilon\sqrt{d/\alpha^2 k}+\sqrt{d^2/\alpha^2 kn}$ up to a $\sqrt{\log(1/\epsilon)}$ factor, larger than the sum of the two separate rates. We provide a polynomial-time algorithm achieving this bound, as well as a matching information theoretic lower bound.
We study the problem of testing whether a function $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree at most $d$ in the \emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\mathcal{D}$ over $\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\mathcal{D}$, makes $(d/\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\varepsilon$ with respect to $\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.
Inspired by Hosoyamada et al.'s work [14], we propose a new quantum meet-in-the-middle (QMITM) attack on $r$-round ($r \ge 7$) Feistel construction to reduce the time complexity. Similar to Hosoyamada et al.'s work, our attack on 7-round Feistel is also based on Guo et al.'s classical meet-in-the-middle (MITM) attack [13]. The classic MITM attack consumes a lot of time mainly in three aspects: construct the lookup table, query data and find a match. Therefore, parallel Grover search processors are used to reduce the time of constructing the lookup table. And we adjust the truncated differentials of the 5-round distinguisher proposed by Guo et al. to balance the complexities between constructing the lookup table and querying data. Finally, we introduce a quantum claw finding algorithm to find a match for reducing time. The subkeys can be recovered by this match. Furthermore, for $r$-round ($r > 7$) Feistel construction, we treat the above attack on the first 7 rounds as an inner loop and use Grover's algorithm to search the last $r-7$ rounds of subkeys as an outer loop. In summary, the total time complexity of our attack on $r$-round ($r \ge 7$) is only $O(2^{2n/3+(r-7)n/4})$ less than classical and quantum attacks. Moreover, our attack belongs to Q1 model and is more practical than other quantum attacks.
With the increasing adoption of NLP models in real-world products, it becomes more and more important to protect these models from privacy leakage. Because private information in language data is sparse, previous research formalized a Selective-Differential-Privacy (SDP) notion to provide protection for sensitive tokens detected by policy functions, and prove its effectiveness on RNN-based models. But the previous mechanism requires separating the private and public model parameters and thus cannot be applied on large attention-based models. In this paper, we propose a simple yet effective just-fine-tune-twice privacy mechanism to first fine-tune on in-domain redacted data and then on in-domain private data, to achieve SDP for large Transformer-based language models. We also design explicit and contextual policy functions to provide protections at different levels. Experiments show that our models achieve strong performance while staying robust to the canary insertion attack. We further show that even under low-resource settings with a small amount of in-domain data, SDP can still improve the model utility. We will release the code, data and models to facilitate future research.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.