亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automated penetration testing (AutoPT) based on reinforcement learning (RL) has proven its ability to improve the efficiency of vulnerability identification in information systems. However, RL-based PT encounters several challenges, including poor sampling efficiency, intricate reward specification, and limited interpretability. To address these issues, we propose a knowledge-informed AutoPT framework called DRLRM-PT, which leverages reward machines (RMs) to encode domain knowledge as guidelines for training a PT policy. In our study, we specifically focus on lateral movement as a PT case study and formulate it as a partially observable Markov decision process (POMDP) guided by RMs. We design two RMs based on the MITRE ATT\&CK knowledge base for lateral movement. To solve the POMDP and optimize the PT policy, we employ the deep Q-learning algorithm with RM (DQRM). The experimental results demonstrate that the DQRM agent exhibits higher training efficiency in PT compared to agents without knowledge embedding. Moreover, RMs encoding more detailed domain knowledge demonstrated better PT performance compared to RMs with simpler knowledge.

相關內容

通過學習、實踐或(huo)探(tan)索所獲(huo)得的認識、判斷或(huo)技能。

Recent progress in self-supervised representation learning has resulted in models that are capable of extracting image features that are not only effective at encoding image level, but also pixel-level, semantics. These features have been shown to be effective for dense visual semantic correspondence estimation, even outperforming fully-supervised methods. Nevertheless, current self-supervised approaches still fail in the presence of challenging image characteristics such as symmetries and repeated parts. To address these limitations, we propose a new approach for semantic correspondence estimation that supplements discriminative self-supervised features with 3D understanding via a weak geometric spherical prior. Compared to more involved 3D pipelines, our model only requires weak viewpoint information, and the simplicity of our spherical representation enables us to inject informative geometric priors into the model during training. We propose a new evaluation metric that better accounts for repeated part and symmetry-induced mistakes. We present results on the challenging SPair-71k dataset, where we show that our approach demonstrates is capable of distinguishing between symmetric views and repeated parts across many object categories, and also demonstrate that we can generalize to unseen classes on the AwA dataset.

Deep learning has significantly improved the accuracy of crop classification using multispectral temporal data. However, these models have complex structures with numerous parameters, requiring large amounts of data and costly training. In low-resource situations with fewer labeled samples, deep learning models perform poorly due to insufficient data. Conversely, compressors are data-type agnostic, and non-parametric methods do not bring underlying assumptions. Inspired by this insight, we propose a non-training alternative to deep learning models, aiming to address these situations. Specifically, the Symbolic Representation Module is proposed to convert the reflectivity into symbolic representations. The symbolic representations are then cross-transformed in both the channel and time dimensions to generate symbolic embeddings. Next, the Multi-scale Normalised Compression Distance (MNCD) is designed to measure the correlation between any two symbolic embeddings. Finally, based on the MNCDs, high quality crop classification can be achieved using only a k-nearest-neighbor classifier kNN. The entire framework is ready-to-use and lightweight. Without any training, it outperformed, on average, 7 advanced deep learning models trained at scale on three benchmark datasets. It also outperforms more than half of these models in the few-shot setting with sparse crop labels. Therefore, the high performance and robustness of our non-training framework makes it truly applicable to real-world crop mapping. Codes are available at: //github.com/qinfengsama/Compressor-Based-Crop-Mapping.

The existing works on object-level language grounding with 3D objects mostly focus on improving performance by utilizing the off-the-shelf pre-trained models to capture features, such as viewpoint selection or geometric priors. However, they have failed to consider exploring the cross-modal representation of language-vision alignment in the cross-domain field. To answer this problem, we propose a novel method called Domain Adaptation for Language Grounding (DA4LG) with 3D objects. Specifically, the proposed DA4LG consists of a visual adapter module with multi-task learning to realize vision-language alignment by comprehensive multimodal feature representation. Experimental results demonstrate that DA4LG competitively performs across visual and non-visual language descriptions, independent of the completeness of observation. DA4LG achieves state-of-the-art performance in the single-view setting and multi-view setting with the accuracy of 83.8% and 86.8% respectively in the language grounding benchmark SNARE. The simulation experiments show the well-practical and generalized performance of DA4LG compared to the existing methods. Our project is available at //sites.google.com/view/da4lg.

For performance and verification in machine learning, new methods have recently been proposed that optimise learning systems to satisfy formally expressed logical properties. Among these methods, differentiable logics (DLs) are used to translate propositional or first-order formulae into loss functions deployed for optimisation in machine learning. At the same time, recent attempts to give programming language support for verification of neural networks showed that DLs can be used to compile verification properties to machine-learning backends. This situation is calling for stronger guarantees about the soundness of such compilers, the soundness and compositionality of DLs, and the differentiability and performance of the resulting loss functions. In this paper, we propose an approach to formalise existing DLs using the Mathematical Components library in the Coq proof assistant. Thanks to this formalisation, we are able to give uniform semantics to otherwise disparate DLs, give formal proofs to existing informal arguments, find errors in previous work, and provide formal proofs to missing conjectured properties. This work is meant as a stepping stone for the development of programming language support for verification of machine learning.

Federated Learning (FL) has been proposed as a privacy-preserving solution for machine learning. However, recent works have reported that FL can leak private client data through membership inference attacks. In this paper, we show that the effectiveness of these attacks on the clients negatively correlates with the size of the client's datasets and model complexity. Based on this finding, we study the capabilities of model-agnostic Federated Learning to preserve privacy, as it enables the use of models of varying complexity in the clients. To systematically study this topic, we first propose a taxonomy of model-agnostic FL methods according to the strategies adopted by the clients to select the sub-models from the server's model. This taxonomy provides a framework for existing model-agnostic FL approaches and leads to the proposal of new FL methods to fill the gaps in the taxonomy. Next, we analyze the privacy-performance trade-off of all the model-agnostic FL architectures as per the proposed taxonomy when subjected to 3 different membership inference attacks on the CIFAR-10 and CIFAR-100 vision datasets. In our experiments, we find that randomness in the strategy used to select the server's sub-model to train the clients' models can control the clients' privacy while keeping competitive performance on the server's side.

The rapid adoption of machine learning (ML) has underscored the importance of serving ML models with high throughput and resource efficiency. Traditional approaches to managing increasing query demands have predominantly focused on hardware scaling, which involves increasing server count or computing power. However, this strategy can often be impractical due to limitations in the available budget or compute resources. As an alternative, accuracy scaling offers a promising solution by adjusting the accuracy of ML models to accommodate fluctuating query demands. Yet, existing accuracy scaling techniques target independent ML models and tend to underperform while managing inference pipelines. Furthermore, they lack integration with hardware scaling, leading to potential resource inefficiencies during low-demand periods. To address the limitations, this paper introduces Loki, a system designed for serving inference pipelines effectively with both hardware and accuracy scaling. Loki incorporates an innovative theoretical framework for optimal resource allocation and an effective query routing algorithm, aimed at improving system accuracy and minimizing latency deadline violations. Our empirical evaluation demonstrates that through accuracy scaling, the effective capacity of a fixed-size cluster can be enhanced by more than $2.7\times$ compared to relying solely on hardware scaling. When compared with state-of-the-art inference-serving systems, Loki achieves up to a $10\times$ reduction in Service Level Objective (SLO) violations, with minimal compromises on accuracy and while fulfilling throughput demands.

Learning from examples of success is an appealing approach to reinforcement learning that eliminates many of the disadvantages of using hand-crafted reward functions or full expert-demonstration trajectories, both of which can be difficult to acquire, biased, or suboptimal. However, learning from examples alone dramatically increases the exploration challenge, especially for complex tasks. This work introduces value-penalized auxiliary control from examples (VPACE); we significantly improve exploration in example-based control by adding scheduled auxiliary control and examples of auxiliary tasks. Furthermore, we identify a value-calibration problem, where policy value estimates can exceed their theoretical limits based on successful data. We resolve this problem, which is exacerbated by learning auxiliary tasks, through the addition of an above-success-level value penalty. Across three simulated and one real robotic manipulation environment, and 21 different main tasks, we show that our approach substantially improves learning efficiency. Videos, code, and datasets are available at //papers.starslab.ca/vpace.

The integration of Artificial Intelligence (AI) into automation systems has the potential to enhance efficiency and to address currently unsolved existing technical challenges. However, the industry-wide adoption of AI is hindered by the lack of standardized documentation for the complex compositions of automation systems, AI software, production hardware, and their interdependencies. This paper proposes a formal model using standards and ontologies to provide clear and structured documentation of AI applications in automation systems. The proposed information model for artificial intelligence in automation systems (AIAS) utilizes ontology design patterns to map and link various aspects of automation systems and AI software. Validated through a practical example, the model demonstrates its effectiveness in improving documentation practices and aiding the sustainable implementation of AI in industrial settings.

Deep metric learning (DML) aims to learn a discriminative high-dimensional embedding space for downstream tasks like classification, clustering, and retrieval. Prior literature predominantly focuses on pair-based and proxy-based methods to maximize inter-class discrepancy and minimize intra-class diversity. However, these methods tend to suffer from the collapse of the embedding space due to their over-reliance on label information. This leads to sub-optimal feature representation and inferior model performance. To maintain the structure of embedding space and avoid feature collapse, we propose a novel loss function called Anti-Collapse Loss. Specifically, our proposed loss primarily draws inspiration from the principle of Maximal Coding Rate Reduction. It promotes the sparseness of feature clusters in the embedding space to prevent collapse by maximizing the average coding rate of sample features or class proxies. Moreover, we integrate our proposed loss with pair-based and proxy-based methods, resulting in notable performance improvement. Comprehensive experiments on benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art methods. Extensive ablation studies verify the effectiveness of our method in preventing embedding space collapse and promoting generalization performance.

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

北京阿比特科技有限公司