We present our case study that aims to help professional assessors make decisions in human assessment, in which they conduct interviews with assessees and evaluate their suitability for certain job roles. Our workshop with two industrial assessors revealed that a computational system that can extract nonverbal cues of assesses from interview videos would be beneficial to assessors in terms of supporting their decision making. In response, we developed such a system based on an unsupervised anomaly detection algorithm using multimodal behavioral features such as facial keypoints, pose, head pose, and gaze. Moreover, we enabled the system to output how much each feature contributed to the outlierness of the detected cues with the purpose of enhancing its interpretability. We then conducted a preliminary study to examine the validity of the system's output by using 20 actual assessment interview videos and involving the two assessors. The results suggested the advantages of using unsupervised anomaly detection in an interpretable manner by illustrating the informativeness of its outputs for assessors. Our approach, which builds on top of the idea of separation of observation and interpretation in human-AI teaming, will facilitate human decision making in highly contextual domains, such as human assessment, while keeping their trust in the system.
We present a data-driven approach to characterizing nonidentifiability of a model's parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically.
Minimax optimization has served as the backbone of many machine learning (ML) problems. Although the convergence behavior of optimization algorithms has been extensively studied in minimax settings, their generalization guarantees in the stochastic setting, i.e., how the solution trained on empirical data performs on the unseen testing data, have been relatively underexplored. A fundamental question remains elusive: What is a good metric to study generalization of minimax learners? In this paper, we aim to answer this question by first showing that primal risk, a universal metric to study generalization in minimization, fails in simple examples of minimax problems. Furthermore, another popular metric, the primal-dual risk, also fails to characterize the generalization behavior for minimax problems with nonconvexity, due to non-existence of saddle points. We thus propose a new metric to study generalization of minimax learners: the primal gap, to circumvent these issues. Next, we derive generalization bounds for the primal gap in nonconvex-concave settings. As byproducts of our analysis, we also solve two open questions: establishing generalization bounds for primal risk and primal-dual risk in the strong sense, i.e., without strong concavity or assuming that the maximization and expectation can be interchanged, while either of these assumptions was needed in the literature. Finally, we leverage this new metric to compare the generalization behavior of two popular algorithms -- gradient descent-ascent (GDA) and gradient descent-max (GDMax) in stochastic minimax optimization.
Whilst lattice-based cryptosystems are believed to be resistant to quantum attack, they are often forced to pay for that security with inefficiencies in implementation. This problem is overcome by ring- and module-based schemes such as Ring-LWE or Module-LWE, whose keysize can be reduced by exploiting its algebraic structure, allowing for faster computations. Many rings may be chosen to define such cryptoschemes, but cyclotomic rings, due to their cyclic nature allowing for easy multiplication, are the community standard. However, there is still much uncertainty as to whether this structure may be exploited to an adversary's benefit. In this paper, we show that the decomposition group of a cyclotomic ring of arbitrary conductor can be utilised to significantly decrease the dimension of the ideal (or module) lattice required to solve a given instance of SVP. Moreover, we show that there exist a large number of rational primes for which, if the prime ideal factors of an ideal lie over primes of this form, give rise to an "easy" instance of SVP. It is important to note that the work on ideal SVP does not break Ring-LWE, since its security reduction is from worst case ideal SVP to average case Ring-LWE, and is one way.
Curbing online hate speech has become the need of the hour; however, a blanket ban on such activities is infeasible for several geopolitical and cultural reasons. To reduce the severity of the problem, in this paper, we introduce a novel task, hate speech normalization, that aims to weaken the intensity of hatred exhibited by an online post. The intention of hate speech normalization is not to support hate but instead to provide the users with a stepping stone towards non-hate while giving online platforms more time to monitor any improvement in the user's behavior. To this end, we manually curated a parallel corpus - hate texts and their normalized counterparts (a normalized text is less hateful and more benign). We introduce NACL, a simple yet efficient hate speech normalization model that operates in three stages - first, it measures the hate intensity of the original sample; second, it identifies the hate span(s) within it; and finally, it reduces hate intensity by paraphrasing the hate spans. We perform extensive experiments to measure the efficacy of NACL via three-way evaluation (intrinsic, extrinsic, and human-study). We observe that NACL outperforms six baselines - NACL yields a score of 0.1365 RMSE for the intensity prediction, 0.622 F1-score in the span identification, and 82.27 BLEU and 80.05 perplexity for the normalized text generation. We further show the generalizability of NACL across other platforms (Reddit, Facebook, Gab). An interactive prototype of NACL was put together for the user study. Further, the tool is being deployed in a real-world setting at Wipro AI as a part of its mission to tackle harmful content on online platforms.
In this manuscript we present several possible ways of modeling human capital accumulation during the spread of a disease following an agent based approach, where agents behave maximizing their intertemporal utility. We assume that the interaction between agents is of mean field type, yielding a Mean Field Game description of the problem. We discuss how the analysis of a model including both the mechanism of change of species from one epidemiological state to the other and an optimization problem for each agent leads to an aggregate behavior that is not easy to describe, and that sometimes exhibits structural problems. Therefore we eventually propose and study numerically a SEIRD model in which the rate of infection depends on the distribution of the population, given exogenously as the solution to the the Mean Field Game system arising as the macroscopic description of the discrete multi-agent economic model for the accumulation of human capital. Such model arises in fact as a simplified but tractable version of the initial one.
We analyze and validate the virtual element method combined with a projection approach similar to the one in [1, 2], to solve problems on two dimensional domains with curved boundaries approximated by polygonal domains obtained as the union of squared elements out of a uniform structured mesh, such as the one that naturally arise when the domain is issued from an image. We show, both theoretically and numerically, that resorting to the use of polygonal element allows to satisfy the assumptions required for the stability of the projection approach, thus allowing to fully exploit the potential of higher order methods, which makes the resulting approach an effective alternative to the use of the finite element method.
Much of the literature on optimal design of bandit algorithms is based on minimization of expected regret. It is well known that designs that are optimal over certain exponential families can achieve expected regret that grows logarithmically in the number of arm plays, at a rate governed by the Lai-Robbins lower bound. In this paper, we show that when one uses such optimized designs, the regret distribution of the associated algorithms necessarily has a very heavy tail, specifically, that of a truncated Cauchy distribution. Furthermore, for $p>1$, the $p$'th moment of the regret distribution grows much faster than poly-logarithmically, in particular as a power of the total number of arm plays. We show that optimized UCB bandit designs are also fragile in an additional sense, namely when the problem is even slightly mis-specified, the regret can grow much faster than the conventional theory suggests. Our arguments are based on standard change-of-measure ideas, and indicate that the most likely way that regret becomes larger than expected is when the optimal arm returns below-average rewards in the first few arm plays, thereby causing the algorithm to believe that the arm is sub-optimal. To alleviate the fragility issues exposed, we show that UCB algorithms can be modified so as to ensure a desired degree of robustness to mis-specification. In doing so, we also provide a sharp trade-off between the amount of UCB exploration and the tail exponent of the resulting regret distribution.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.