The list-decodable code has been an active topic in theoretical computer science.There are general results about the list-decodability to the Johnson radius and the list-decoding capacity theorem. In this paper we show that rates, list-decodable radius and list sizes are closely related to the classical topic of covering codes. We prove new general simple but strong upper bounds for list-decodable codes in general finite metric spaces based on various covering codes. The general covering code upper bounds can be applied to the case that the volumes of the balls depend on the centers, not only on the radius. Then any good upper bound on the covering radius or the size of covering code imply a good upper bound on the sizes of list-decodable codes. Our results give exponential improvements on the recent generalized Singleton upper bound in STOC 2020 for Hamming metric list-decodable codes, when the code lengths are large. A generalized Singleton upper bound for average-radius list-decodable codes is also given from our general covering code upper bound. Even for the list size $L=1$ case our covering code upper bounds give highly non-trivial upper bounds on the sizes of codes with the given minimum distance. The asymptotic forms of covering code bounds in the Hamming metric setting lead to an asymptotic bound for list-decodable binary codes, which is similar to and weaker than the classical McEliece-Rudemich-Rumsey-Welch bound. We also suggest to study the combinatorial covering list-decodable codes as a natural generalization of combinatorial list-decodable codes. We apply our general covering code upper bounds for list-decodable rank-metric codes, list-decodable subspace codes, list-decodable insertion codes and list-decodable deletion codes. Some new better results about non-list-decodability of rank-metric codes and subspace codes are obtained.
An improved Singleton-type upper bound is presented for the list decoding radius of linear codes, in terms of the code parameters [n,k,d] and the list size L. L-MDS codes are then defined as codes that attain this bound (under a slightly stronger notion of list decodability), with 1-MDS codes corresponding to ordinary linear MDS codes. Several properties of such codes are presented; in particular, it is shown that the 2-MDS property is preserved under duality. Finally, explicit constructions for 2-MDS codes are presented through generalized Reed-Solomon (GRS) codes.
We derive a consistency result, in the $L_1$-sense, for incomplete U-statistics in the non-standard case where the kernel at hand has infinite second-order moments. Assuming that the kernel has finite moments of order $p(\geq 1)$, we obtain a bound on the $L_1$ distance between the incomplete U-statistic and its Dirac weak limit, which allows us to obtain, for any fixed $p$, an upper bound on the consistency rate. Our results hold for most classical sampling schemes that are used to obtain incomplete U-statistics.
We previously proposed the first nontrivial examples of a code having support $t$-designs for all weights obtained from the Assmus-Mattson theorem and having support $t'$-designs for some weights with some $t'>t$. This suggests the possibility of generalizing the Assmus-Mattson theorem, which is very important in design and coding theory. In the present paper, we generalize this example as a strengthening of the Assmus-Mattson theorem along this direction. As a corollary, we provide a new characterization of the extended Golay code $\mathcal{G}_{24}$.
In this paper we prove upper and lower bounds on the minimal spherical dispersion. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, up to logarithmic terms linear in the dimension $d$. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere.
The mutual information (MI) of Gaussian multi-input multi-output (MIMO) channels has been evaluated by utilizing random matrix theory (RMT) and shown to asymptotically follow Gaussian distribution, where the ergodic mutual information (EMI) converges to a deterministic quantity. However, with non-Gaussian channels, there is a bias between the EMI and its deterministic equivalent (DE), whose evaluation is not available in the literature. This bias of the EMI is related to the bias for the trace of the resolvent in large RMT. In this paper, we first derive the bias for the trace of the resolvent, which is further extended to compute the bias for the linear spectral statistics (LSS). Then, we apply the above results on non-Gaussian MIMO channels to determine the bias for the EMI. It is also proved that the bias for the EMI is $-0.5$ times of that for the variance of the MI. Finally, the derived bias is utilized to modify the central limit theory (CLT) and calculate the outage probability. Numerical results show that the modified CLT significantly outperforms previous methods in approximating the distribution of the MI and improves the accuracy for the outage probability evaluation.
The paper concerns convergence and asymptotic statistics for stochastic approximation driven by Markovian noise: $$ \theta_{n+1}= \theta_n + \alpha_{n + 1} f(\theta_n, \Phi_{n+1}) \,,\quad n\ge 0, $$ in which each $\theta_n\in\Re^d$, $ \{ \Phi_n \}$ is a Markov chain on a general state space X with stationary distribution $\pi$, and $f:\Re^d\times \text{X} \to\Re^d$. In addition to standard Lipschitz bounds on $f$, and conditions on the vanishing step-size sequence $\{\alpha_n\}$, it is assumed that the associated ODE is globally asymptotically stable with stationary point denoted $\theta^*$, where $\bar f(\theta)=E[f(\theta,\Phi)]$ with $\Phi\sim\pi$. Moreover, the ODE@$\infty$ defined with respect to the vector field, $$ \bar f_\infty(\theta):= \lim_{r\to\infty} r^{-1} \bar f(r\theta) \,,\qquad \theta\in\Re^d, $$ is asymptotically stable. The main contributions are summarized as follows: (i) The sequence $\theta$ is convergent if $\Phi$ is geometrically ergodic, and subject to compatible bounds on $f$. The remaining results are established under a stronger assumption on the Markov chain: A slightly weaker version of the Donsker-Varadhan Lyapunov drift condition known as (DV3). (ii) A Lyapunov function is constructed for the joint process $\{\theta_n,\Phi_n\}$ that implies convergence of $\{ \theta_n\}$ in $L_4$. (iii) A functional CLT is established, as well as the usual one-dimensional CLT for the normalized error $z_n:= (\theta_n-\theta^*)/\sqrt{\alpha_n}$. Moment bounds combined with the CLT imply convergence of the normalized covariance, $$ \lim_{n \to \infty} E [ z_n z_n^T ] = \Sigma_\theta, $$ where $\Sigma_\theta$ is the asymptotic covariance appearing in the CLT. (iv) An example is provided where the Markov chain $\Phi$ is geometrically ergodic but it does not satisfy (DV3). While the algorithm is convergent, the second moment is unbounded.
We give a new deterministic construction of integer sensing matrices that can be used for the recovery of integer-valued signals in compressed sensing. This is a family of $n \times d$ integer matrices, $d \geq n$, with bounded sup-norm and the property that no $\ell$ column vectors are linearly dependent, $\ell \leq n$. Further, if $\ell \leq o(\log n)$ then $d/n \to \infty$ as $n \to \infty$. Our construction comes from particular sets of difference vectors of point-sets in $\mathbb R^n$ that cannot be covered by few parallel hyperplanes. We construct examples of such sets on the $0, \pm 1$ grid and use them for the matrix construction. We also show a connection of our constructions to a simple version of the Tarski plank problem.
Discovering causal structure among a set of variables is a fundamental problem in many empirical sciences. Traditional score-based casual discovery methods rely on various local heuristics to search for a Directed Acyclic Graph (DAG) according to a predefined score function. While these methods, e.g., greedy equivalence search, may have attractive results with infinite samples and certain model assumptions, they are usually less satisfactory in practice due to finite data and possible violation of assumptions. Motivated by recent advances in neural combinatorial optimization, we propose to use Reinforcement Learning (RL) to search for the DAG with the best scoring. Our encoder-decoder model takes observable data as input and generates graph adjacency matrices that are used to compute rewards. The reward incorporates both the predefined score function and two penalty terms for enforcing acyclicity. In contrast with typical RL applications where the goal is to learn a policy, we use RL as a search strategy and our final output would be the graph, among all graphs generated during training, that achieves the best reward. We conduct experiments on both synthetic and real datasets, and show that the proposed approach not only has an improved search ability but also allows a flexible score function under the acyclicity constraint.
We present a novel framework for the automatic discovery and recognition of motion primitives in videos of human activities. Given the 3D pose of a human in a video, human motion primitives are discovered by optimizing the `motion flux', a quantity which captures the motion variation of a group of skeletal joints. A normalization of the primitives is proposed in order to make them invariant with respect to a subject anatomical variations and data sampling rate. The discovered primitives are unknown and unlabeled and are unsupervisedly collected into classes via a hierarchical non-parametric Bayes mixture model. Once classes are determined and labeled they are further analyzed for establishing models for recognizing discovered primitives. Each primitive model is defined by a set of learned parameters. Given new video data and given the estimated pose of the subject appearing on the video, the motion is segmented into primitives, which are recognized with a probability given according to the parameters of the learned models. Using our framework we build a publicly available dataset of human motion primitives, using sequences taken from well-known motion capture datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields including video analysis, human inspired motion generation, learning by demonstration, intuitive human-robot interaction, and human behavior analysis.
Deep distance metric learning (DDML), which is proposed to learn image similarity metrics in an end-to-end manner based on the convolution neural network, has achieved encouraging results in many computer vision tasks.$L2$-normalization in the embedding space has been used to improve the performance of several DDML methods. However, the commonly used Euclidean distance is no longer an accurate metric for $L2$-normalized embedding space, i.e., a hyper-sphere. Another challenge of current DDML methods is that their loss functions are usually based on rigid data formats, such as the triplet tuple. Thus, an extra process is needed to prepare data in specific formats. In addition, their losses are obtained from a limited number of samples, which leads to a lack of the global view of the embedding space. In this paper, we replace the Euclidean distance with the cosine similarity to better utilize the $L2$-normalization, which is able to attenuate the curse of dimensionality. More specifically, a novel loss function based on the von Mises-Fisher distribution is proposed to learn a compact hyper-spherical embedding space. Moreover, a new efficient learning algorithm is developed to better capture the global structure of the embedding space. Experiments for both classification and retrieval tasks on several standard datasets show that our method achieves state-of-the-art performance with a simpler training procedure. Furthermore, we demonstrate that, even with a small number of convolutional layers, our model can still obtain significantly better classification performance than the widely used softmax loss.