We propose a novel framework to learn 3D point cloud semantics from 2D multi-view image observations containing pose error. On the one hand, directly learning from the massive, unstructured and unordered 3D point cloud is computationally and algorithmically more difficult than learning from compactly-organized and context-rich 2D RGB images. On the other hand, both LiDAR point cloud and RGB images are captured in standard automated-driving datasets. This motivates us to conduct a "task transfer" paradigm so that 3D semantic segmentation benefits from aggregating 2D semantic cues, albeit pose noises are contained in 2D image observations. Among all difficulties, pose noise and erroneous prediction from 2D semantic segmentation approaches are the main challenges for the task transfer. To alleviate the influence of those factor, we perceive each 3D point using multi-view images and for each single image a patch observation is associated. Moreover, the semantic labels of a block of neighboring 3D points are predicted simultaneously, enabling us to exploit the point structure prior to further improve the performance. A hierarchical full attention network~(HiFANet) is designed to sequentially aggregates patch, bag-of-frames and inter-point semantic cues, with hierarchical attention mechanism tailored for different level of semantic cues. Also, each preceding attention block largely reduces the feature size before feeding to the next attention block, making our framework slim. Experiment results on Semantic-KITTI show that the proposed framework outperforms existing 3D point cloud based methods significantly, it requires much less training data and exhibits tolerance to pose noise. The code is available at //github.com/yuhanghe01/HiFANet.
Monocular 3D object detection (Mono3D) has achieved tremendous improvements with emerging large-scale autonomous driving datasets and the rapid development of deep learning techniques. However, caused by severe domain gaps (e.g., the field of view (FOV), pixel size, and object size among datasets), Mono3D detectors have difficulty in generalization, leading to drastic performance degradation on unseen domains. To solve these issues, we combine the position-invariant transform and multi-scale training with the pixel-size depth strategy to construct an effective unified camera-generalized paradigm (CGP). It fully considers discrepancies in the FOV and pixel size of images captured by different cameras. Moreover, we further investigate the obstacle in quantitative metrics when cross-dataset inference through an exhaustive systematic study. We discern that the size bias of prediction leads to a colossal failure. Hence, we propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment. Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme even without utilizing data on the target domain.
Semantic 3D scene understanding is a problem of critical importance in robotics. While significant advances have been made in simultaneous localization and mapping algorithms, robots are still far from having the common sense knowledge about household objects and their locations of an average human. We introduce a novel method for leveraging common sense embedded within large language models for labelling rooms given the objects contained within. This algorithm has the added benefits of (i) requiring no task-specific pre-training (operating entirely in the zero-shot regime) and (ii) generalizing to arbitrary room and object labels, including previously-unseen ones -- both of which are highly desirable traits in robotic scene understanding algorithms. The proposed algorithm operates on 3D scene graphs produced by modern spatial perception systems, and we hope it will pave the way to more generalizable and scalable high-level 3D scene understanding for robotics.
The few-shot learning ability of vision transformers (ViTs) is rarely investigated though heavily desired. In this work, we empirically find that with the same few-shot learning frameworks, \eg~Meta-Baseline, replacing the widely used CNN feature extractor with a ViT model often severely impairs few-shot classification performance. Moreover, our empirical study shows that in the absence of inductive bias, ViTs often learn the low-qualified token dependencies under few-shot learning regime where only a few labeled training data are available, which largely contributes to the above performance degradation. To alleviate this issue, for the first time, we propose a simple yet effective few-shot training framework for ViTs, namely Self-promoted sUpervisioN (SUN). Specifically, besides the conventional global supervision for global semantic learning SUN further pretrains the ViT on the few-shot learning dataset and then uses it to generate individual location-specific supervision for guiding each patch token. This location-specific supervision tells the ViT which patch tokens are similar or dissimilar and thus accelerates token dependency learning. Moreover, it models the local semantics in each patch token to improve the object grounding and recognition capability which helps learn generalizable patterns. To improve the quality of location-specific supervision, we further propose two techniques:~1) background patch filtration to filtrate background patches out and assign them into an extra background class; and 2) spatial-consistent augmentation to introduce sufficient diversity for data augmentation while keeping the accuracy of the generated local supervisions. Experimental results show that SUN using ViTs significantly surpasses other few-shot learning frameworks with ViTs and is the first one that achieves higher performance than those CNN state-of-the-arts.
Despite the success of deep learning on supervised point cloud semantic segmentation, obtaining large-scale point-by-point manual annotations is still a significant challenge. To reduce the huge annotation burden, we propose a Region-based and Diversity-aware Active Learning (ReDAL), a general framework for many deep learning approaches, aiming to automatically select only informative and diverse sub-scene regions for label acquisition. Observing that only a small portion of annotated regions are sufficient for 3D scene understanding with deep learning, we use softmax entropy, color discontinuity, and structural complexity to measure the information of sub-scene regions. A diversity-aware selection algorithm is also developed to avoid redundant annotations resulting from selecting informative but similar regions in a querying batch. Extensive experiments show that our method highly outperforms previous active learning strategies, and we achieve the performance of 90% fully supervised learning, while less than 15% and 5% annotations are required on S3DIS and SemanticKITTI datasets, respectively. Our code is publicly available at //github.com/tsunghan-wu/ReDAL.
A self-driving perception model aims to extract 3D semantic representations from multiple cameras collectively into the bird's-eye-view (BEV) coordinate frame of the ego car in order to ground downstream planner. Existing perception methods often rely on error-prone depth estimation of the whole scene or learning sparse virtual 3D representations without the target geometry structure, both of which remain limited in performance and/or capability. In this paper, we present a novel end-to-end architecture for ego 3D representation learning from an arbitrary number of unconstrained camera views. Inspired by the ray tracing principle, we design a polarized grid of "imaginary eyes" as the learnable ego 3D representation and formulate the learning process with the adaptive attention mechanism in conjunction with the 3D-to-2D projection. Critically, this formulation allows extracting rich 3D representation from 2D images without any depth supervision, and with the built-in geometry structure consistent w.r.t. BEV. Despite its simplicity and versatility, extensive experiments on standard BEV visual tasks (e.g., camera-based 3D object detection and BEV segmentation) show that our model outperforms all state-of-the-art alternatives significantly, with an extra advantage in computational efficiency from multi-task learning.
Scene flow represents the motion of points in the 3D space, which is the counterpart of the optical flow that represents the motion of pixels in the 2D image. However, it is difficult to obtain the ground truth of scene flow in the real scenes, and recent studies are based on synthetic data for training. Therefore, how to train a scene flow network with unsupervised methods based on real-world data shows crucial significance. A novel unsupervised learning method for scene flow is proposed in this paper, which utilizes the images of two consecutive frames taken by monocular camera without the ground truth of scene flow for training. Our method realizes the goal that training scene flow network with real-world data, which bridges the gap between training data and test data and broadens the scope of available data for training. Unsupervised learning of scene flow in this paper mainly consists of two parts: (i) depth estimation and camera pose estimation, and (ii) scene flow estimation based on four different loss functions. Depth estimation and camera pose estimation obtain the depth maps and camera pose between two consecutive frames, which provide further information for the next scene flow estimation. After that, we used depth consistency loss, dynamic-static consistency loss, Chamfer loss, and Laplacian regularization loss to carry out unsupervised training of the scene flow network. To our knowledge, this is the first paper that realizes the unsupervised learning of 3D scene flow from monocular camera. The experiment results on KITTI show that our method for unsupervised learning of scene flow meets great performance compared to traditional methods Iterative Closest Point (ICP) and Fast Global Registration (FGR). The source code is available at: //github.com/IRMVLab/3DUnMonoFlow.
Depth and ego-motion estimations are essential for the localization and navigation of autonomous robots and autonomous driving. Recent studies make it possible to learn the per-pixel depth and ego-motion from the unlabeled monocular video. A novel unsupervised training framework is proposed with 3D hierarchical refinement and augmentation using explicit 3D geometry. In this framework, the depth and pose estimations are hierarchically and mutually coupled to refine the estimated pose layer by layer. The intermediate view image is proposed and synthesized by warping the pixels in an image with the estimated depth and coarse pose. Then, the residual pose transformation can be estimated from the new view image and the image of the adjacent frame to refine the coarse pose. The iterative refinement is implemented in a differentiable manner in this paper, making the whole framework optimized uniformly. Meanwhile, a new image augmentation method is proposed for the pose estimation by synthesizing a new view image, which creatively augments the pose in 3D space but gets a new augmented 2D image. The experiments on KITTI demonstrate that our depth estimation achieves state-of-the-art performance and even surpasses recent approaches that utilize other auxiliary tasks. Our visual odometry outperforms all recent unsupervised monocular learning-based methods and achieves competitive performance to the geometry-based method, ORB-SLAM2 with back-end optimization.
As a highly ill-posed issue, single image super-resolution (SISR) has been widely investigated in recent years. The main task of SISR is to recover the information loss caused by the degradation procedure. According to the Nyquist sampling theory, the degradation leads to aliasing effect and makes it hard to restore the correct textures from low-resolution (LR) images. In practice, there are correlations and self-similarities among the adjacent patches in the natural images. This paper considers the self-similarity and proposes a hierarchical image super-resolution network (HSRNet) to suppress the influence of aliasing. We consider the SISR issue in the optimization perspective, and propose an iterative solution pattern based on the half-quadratic splitting (HQS) method. To explore the texture with local image prior, we design a hierarchical exploration block (HEB) and progressive increase the receptive field. Furthermore, multi-level spatial attention (MSA) is devised to obtain the relations of adjacent feature and enhance the high-frequency information, which acts as a crucial role for visual experience. Experimental result shows HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
Image inpainting is the task of filling masked or unknown regions of an image with visually realistic contents, which has been remarkably improved by Deep Neural Networks (DNNs) recently. Essentially, as an inverse problem, the inpainting has the underlying challenges of reconstructing semantically coherent results without texture artifacts. Many previous efforts have been made via exploiting attention mechanisms and prior knowledge, such as edges and semantic segmentation. However, these works are still limited in practice by an avalanche of learnable prior parameters and prohibitive computational burden. To this end, we propose a novel model -- Wavelet prior attention learning in Axial Inpainting Network (WAIN), whose generator contains the encoder, decoder, as well as two key components of Wavelet image Prior Attention (WPA) and stacked multi-layer Axial-Transformers (ATs). Particularly, the WPA guides the high-level feature aggregation in the multi-scale frequency domain, alleviating the textual artifacts. Stacked ATs employ unmasked clues to help model reasonable features along with low-level features of horizontal and vertical axes, improving the semantic coherence. Extensive quantitative and qualitative experiments on Celeba-HQ and Places2 datasets are conducted to validate that our WAIN can achieve state-of-the-art performance over the competitors. The codes and models will be released.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.