ChatGPT demonstrates significant potential to revolutionize software engineering (SE) by exhibiting outstanding performance in SE tasks such as code and document generation. However, the high reliability and risk control requirements in software engineering raise concerns about the lack of interpretability of ChatGPT. To address this concern, we conducted a study to evaluate the capabilities of ChatGPT and its limitations for code analysis in SE. We break down the abilities needed for artificial intelligence (AI) models to address SE tasks related to code analysis into three categories:1) syntax understanding, 2) static behavior understanding, and 3) dynamic behavior understanding. Our investigation focused on the ability of ChatGPT to comprehend code syntax and semantic structures, which include abstract syntax trees (AST), control flow graphs (CFG), and call graphs (CG). We assessed the performance of ChatGPT on cross-language tasks involving C, Java, Python, and Solidity. Our findings revealed that while ChatGPT has a talent for understanding code syntax, it struggles with comprehending code semantics, particularly dynamic semantics. We conclude that ChatGPT possesses capabilities similar to an Abstract Syntax Tree (AST) parser, demonstrating initial competencies in static code analysis. Furthermore, our study highlights that ChatGPT is susceptible to hallucinations when interpreting code semantic structures and fabricating nonexistent facts. These results indicate the need to explore methods to verify the correctness of ChatGPT output to ensure its dependability in SE. More importantly, our study provides an initial answer to why the codes generated by LLM are usually syntax correct but vulnerable.
Although advancements in machine learning have driven the development of malicious URL detection technology, current techniques still face significant challenges in their capacity to generalize and their resilience against evolving threats. In this paper, we propose PyraTrans, a novel method that integrates pretrained Transformers with pyramid feature learning to detect malicious URL. PyraTrans utilizes a pretrained CharBERT as its foundation and is augmented with three interconnected feature modules: 1) Encoder Feature Extraction, extracting multi-order feature matrices from each CharBERT encoder layer; 2) Multi-Scale Feature Learning, capturing local contextual insights at various scales and aggregating information across encoder layers; and 3) Spatial Pyramid Attention, focusing on regional-level attention to emphasize areas rich in expressive information. The proposed approach addresses the limitations of the Transformer in local feature learning and regional relational awareness, which are vital for capturing URL-specific word patterns, character combinations, or structural anomalies. In several challenging experimental scenarios, the proposed method has shown significant improvements in accuracy, generalization, and robustness in malicious URL detection. For instance, it achieved a peak F1-score improvement of 40% in class-imbalanced scenarios, and exceeded the best baseline result by 14.13% in accuracy in adversarial attack scenarios. Additionally, we conduct a case study where our method accurately identifies all 30 active malicious web pages, whereas two pior SOTA methods miss 4 and 7 malicious web pages respectively. Codes and data are available at://github.com/Alixyvtte/PyraTrans.
The partially observable constrained optimization problems (POCOPs) impede data-driven optimization techniques since an infeasible solution of POCOPs can provide little information about the objective as well as the constraints. We endeavor to design an efficient and provable method for expensive POCOPs under the framework of constrained Bayesian optimization. Our method consists of two key components. Firstly, we present an improved design of the acquisition functions that introduces balanced exploration during optimization. We rigorously study the convergence properties of this design to demonstrate its effectiveness. Secondly, we propose a Gaussian process embedding different likelihoods as the surrogate model for a partially observable constraint. This model leads to a more accurate representation of the feasible regions compared to traditional classification-based models. Our proposed method is empirically studied on both synthetic and real-world problems. The results demonstrate the competitiveness of our method for solving POCOPs.
The recent surge in pervasive devices generating dynamic data streams has underscored the necessity for learning systems to adapt to data distributional shifts continually. To tackle this challenge, the research community has put forth a spectrum of methodologies, including the demanding pursuit of class-incremental learning without replay data. In this study, we present MIND, a parameter isolation method that aims to significantly enhance the performance of replay-free solutions and achieve state-of-the-art results on several widely studied datasets. Our approach introduces two main contributions: two alternative distillation procedures that significantly improve the efficiency of MIND increasing the accumulated knowledge of each sub-network, and the optimization of the BachNorm layers across tasks inside the sub-networks. Overall, MIND outperforms all the state-of-the-art methods for rehearsal-free Class-Incremental learning (with an increment in classification accuracy of approx. +6% on CIFAR-100/10 and +10% on TinyImageNet/10) reaching up to approx. +40% accuracy in Domain-Incremental scenarios. Moreover, we ablated each contribution to demonstrate its impact on performance improvement. Our results showcase the superior performance of MIND indicating its potential for addressing the challenges posed by Class-incremental and Domain-Incremental learning in resource-constrained environments.
Despite remarkable success in various applications, large language models (LLMs) are vulnerable to adversarial jailbreaks that make the safety guardrails void. However, previous studies for jailbreaks usually resort to brute-force optimization or extrapolations of a high computation cost, which might not be practical or effective. In this paper, inspired by the Milgram experiment that individuals can harm another person if they are told to do so by an authoritative figure, we disclose a lightweight method, termed as DeepInception, which can easily hypnotize LLM to be a jailbreaker and unlock its misusing risks. Specifically, DeepInception leverages the personification ability of LLM to construct a novel nested scene to behave, which realizes an adaptive way to escape the usage control in a normal scenario and provides the possibility for further direct jailbreaks. Empirically, we conduct comprehensive experiments to show its efficacy. Our DeepInception can achieve competitive jailbreak success rates with previous counterparts and realize a continuous jailbreak in subsequent interactions, which reveals the critical weakness of self-losing on both open/closed-source LLMs like Falcon, Vicuna, Llama-2, and GPT-3.5/4/4V. Our investigation appeals that people should pay more attention to the safety aspects of LLMs and a stronger defense against their misuse risks. The code is publicly available at: //github.com/tmlr-group/DeepInception.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.