Trajectory optimization (TO) aims to find a sequence of valid states while minimizing costs. However, its fine validation process is often costly due to computationally expensive collision searches, otherwise coarse searches lower the safety of the system losing a precise solution. To resolve the issues, we introduce a new collision-distance estimator, GraphDistNet, that can precisely encode the structural information between two geometries by leveraging edge feature-based convolutional operations, and also efficiently predict a batch of collision distances and gradients through 25,000 random environments with a maximum of 20 unforeseen objects. Further, we show the adoption of attention mechanism enables our method to be easily generalized in unforeseen complex geometries toward TO. Our evaluation show GraphDistNet outperforms state-of-the-art baseline methods in both simulated and real world tasks.
Enhancing existing transmission lines is a useful tool to combat transmission congestion and guarantee transmission security with increasing demand and boosting the renewable energy source. This study concerns the selection of lines whose capacity should be expanded and by how much from the perspective of independent system operator (ISO) to minimize the system cost with the consideration of transmission line constraints and electricity generation and demand balance conditions, and incorporating ramp-up and startup ramp rates, shutdown ramp rates, ramp-down rate limits and minimum up and minimum down times. For that purpose, we develop the ISO unit commitment and economic dispatch model and show it as a right-hand side uncertainty multiple parametric analysis for the mixed integer linear programming (MILP) problem. We first relax the binary variable to continuous variables and employ the Lagrange method and Karush-Kuhn-Tucker conditions to obtain optimal solutions (optimal decision variables and objective function) and critical regions associated with active and inactive constraints. Further, we extend the traditional branch and bound method for the large-scale MILP problem by determining the upper bound of the problem at each node, then comparing the difference between the upper and lower bounds and reaching the approximate optimal solution within the decision makers' tolerated error range. In additional, the objective function's first derivative on the parameters of each line is used to inform the selection of lines to ease congestion and maximize social welfare. Finally, the amount of capacity upgrade will be chosen by balancing the cost-reduction rate of the objective function on parameters and the cost of the line upgrade. Our findings are supported by numerical simulation and provide transmission line planners with decision-making guidance.
Refinement type checkers are a powerful way to reason about functional programs. For example, one can prove properties of a slow, specification implementation, porting the proofs to an optimized implementation that behaves the same. Without functional extensionality, proofs must relate functions that are fully applied. When data itself has a higher-order representation, fully applied proofs face serious impediments! When working with first-order data, fully applied proofs lead to noisome duplication when using higher-order functions. While dependent type theories are typically consistent with functional extensionality axioms, refinement type systems with semantic subtyping treat naive phrasings of functional extensionality inconsistently, leading to unsoundness. We demonstrate this unsoundness and develop a new approach to equality in Liquid Haskell: we define a propositional equality in a library we call PEq. Using PEq avoids the unsoundness while still proving useful equalities at higher types; we demonstrate its use in several case studies. We validate PEq by building a small model and developing its metatheory. Additionally, we prove metaproperties of PEq inside Liquid Haskell itself using an unnamed folklore technique, which we dub `classy induction'.
The deployment of the sensor nodes (SNs) always plays a decisive role in the system performance of wireless sensor networks (WSNs). In this work, we propose an optimal deployment method for practical heterogeneous WSNs which gives a deep insight into the trade-off between the reliability and deployment cost. Specifically, this work aims to provide the optimal deployment of SNs to maximize the coverage degree and connection degree, and meanwhile minimize the overall deployment cost. In addition, this work fully considers the heterogeneity of SNs (i.e. differentiated sensing range and deployment cost) and three-dimensional (3-D) deployment scenarios. This is a multi-objective optimization problem, non-convex, multimodal and NP-hard. To solve it, we develop a novel swarm-based multi-objective optimization algorithm, known as the competitive multi-objective marine predators algorithm (CMOMPA) whose performance is verified by comprehensive comparative experiments with ten other stateof-the-art multi-objective optimization algorithms. The computational results demonstrate that CMOMPA is superior to others in terms of convergence and accuracy and shows excellent performance on multimodal multiobjective optimization problems. Sufficient simulations are also conducted to evaluate the effectiveness of the CMOMPA based optimal SNs deployment method. The results show that the optimized deployment can balance the trade-off among deployment cost, sensing reliability and network reliability. The source code is available on //github.com/iNet-WZU/CMOMPA.
We consider the problem of reducing the dimensions of parameters and data in non-Gaussian Bayesian inference problems. Our goal is to identify an "informed" subspace of the parameters and an "informative" subspace of the data so that a high-dimensional inference problem can be approximately reformulated in low-to-moderate dimensions, thereby improving the computational efficiency of many inference techniques. To do so, we exploit gradient evaluations of the log-likelihood function. Furthermore, we use an information-theoretic analysis to derive a bound on the posterior error due to parameter and data dimension reduction. This bound relies on logarithmic Sobolev inequalities, and it reveals the appropriate dimensions of the reduced variables. We compare our method with classical dimension reduction techniques, such as principal component analysis and canonical correlation analysis, on applications ranging from mechanics to image processing.
Trajectory prediction is an essential task for successful human robot interaction, such as in autonomous driving. In this work, we address the problem of predicting future pedestrian trajectories in a first person view setting with a moving camera. To that end, we propose a novel action-based contrastive learning loss, that utilizes pedestrian action information to improve the learned trajectory embeddings. The fundamental idea behind this new loss is that trajectories of pedestrians performing the same action should be closer to each other in the feature space than the trajectories of pedestrians with significantly different actions. In other words, we argue that behavioral information about pedestrian action influences their future trajectory. Furthermore, we introduce a novel sampling strategy for trajectories that is able to effectively increase negative and positive contrastive samples. Additional synthetic trajectory samples are generated using a trained Conditional Variational Autoencoder (CVAE), which is at the core of several models developed for trajectory prediction. Results show that our proposed contrastive framework employs contextual information about pedestrian behavior, i.e. action, effectively, and it learns a better trajectory representation. Thus, integrating the proposed contrastive framework within a trajectory prediction model improves its results and outperforms state-of-the-art methods on three trajectory prediction benchmarks [31, 32, 26].
Pairwise debiasing is one of the most effective strategies in reducing position bias in learning-to-rank (LTR) models. However, limiting the scope of this strategy, are the underlying assumptions required by many pairwise debiasing approaches. In this paper, we develop an approach based on a minimalistic set of assumptions that can be applied to a much broader range of user browsing patterns and arbitrary presentation layouts. We implement the approach as a simplified version of the Unbiased LambdaMART and demonstrate that it retains the underlying unbiasedness property in a wider variety of settings than the original algorithm. Finally, using simulations with "golden" relevance labels, we will show that the simplified version compares favourably with the original Unbiased LambdaMART when the examination of different positions in a ranked list is not assumed to be independent.
Federated Learning (FL) is a variant of distributed learning where edge devices collaborate to learn a model without sharing their data with the central server or each other. We refer to the process of training multiple independent models simultaneously in a federated setting using a common pool of clients as multi-model FL. In this work, we propose two variants of the popular FedAvg algorithm for multi-model FL, with provable convergence guarantees. We further show that for the same amount of computation, multi-model FL can have better performance than training each model separately. We supplement our theoretical results with experiments in strongly convex, convex, and non-convex settings.
In this paper we propose new methodology for the data segmentation, also known as multiple change point problem, in a general framework including classic mean change scenarios, changes in linear regression but also changes in the time series structure such as in the parameters of Poisson-autoregressive time series. In particular, we derive a general theory based on estimating equations proving consistency for the number of change points as well as rates of convergence for the estimators of the locations of the change points. More precisely, two different types of MOSUM (moving sum) statistics are considered: A MOSUM-Wald statistic based on differences of local estimators and a MOSUM-score statistic based on a global estimator. The latter is usually computationally less involved in particular in non-linear problems where no closed form of the estimator is known such that numerical methods are required. Finally, we evaluate the methodology by means of simulated data as well as using some geophysical well-log data.
Avoiding collisions between obstacles and vehicles such as cars, robots or aircraft is essential to the development of automation and autonomy. To simplify the problem, many collision avoidance algorithms and proofs consider vehicles to be a point mass, though the actual vehicles are not points. In this paper, we consider a convex polygonal vehicle with nonzero area traveling along a 2-dimensional trajectory. We derive an easily-checkable, quantifier-free formula to check whether a given obstacle will collide with the vehicle moving on the planned trajectory. We apply our method to two case studies of aircraft collision avoidance and study its performance.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.