亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we investigate the interval generalized Sylvester matrix equation ${\bf{A}}X{\bf{B}}+{\bf{C}}X{\bf{D}}={\bf{F}}$ and develop some techniques for obtaining outer estimations for the so-called united solution set of this interval system. First, we propose a modified variant of the Krawczyk operator which causes reducing computational complexity to cubic, compared to Kronecker product form. We then propose an iterative technique for enclosing the solution set. These approaches are based on spectral decompositions of the midpoints of ${\bf{A}}$, ${\bf{B}}$, ${\bf{C}}$ and ${\bf{D}}$ and in both of them we suppose that the midpoints of ${\bf{A}}$ and ${\bf{C}}$ are simultaneously diagonalizable as well as for the midpoints of the matrices ${\bf{B}}$ and ${\bf{D}}$. Some numerical experiments are given to illustrate the performance of the proposed methods.

相關內容

The quantum alternating operator ansatz (QAOA) is a heuristic hybrid quantum-classical algorithm for finding high-quality approximate solutions to combinatorial optimization problems, such as Maximum Satisfiability. While QAOA is well-studied, theoretical results as to its runtime or approximation ratio guarantees are still relatively sparse. We provide some of the first lower bounds for the number of rounds (the dominant component of QAOA runtimes) required for QAOA. For our main result, (i) we leverage a connection between quantum annealing times and the angles of QAOA to derive a lower bound on the number of rounds of QAOA with respect to the guaranteed approximation ratio. We apply and calculate this bound with Grover-style mixing unitaries and (ii) show that this type of QAOA requires at least a polynomial number of rounds to guarantee any constant approximation ratios for most problems. We also (iii) show that the bound depends only on the statistical values of the objective functions, and when the problem can be modeled as a $k$-local Hamiltonian, can be easily estimated from the coefficients of the Hamiltonians. For the conventional transverse field mixer, (iv) our framework gives a trivial lower bound to all bounded occurrence local cost problems and all strictly $k$-local cost Hamiltonians matching known results that constant approximation ratio is obtainable with constant round QAOA for a few optimization problems from these classes. Using our novel proof framework, (v) we recover the Grover lower bound for unstructured search and -- with small modification -- show that our bound applies to any QAOA-style search protocol that starts in the ground state of the mixing unitaries.

Building on the successes of local kernel methods for approximating the solutions to partial differential equations (PDE) and the evaluation of definite integrals (quadrature/cubature), a local estimate of the error in such approximations is developed. This estimate is useful for determining locations in the solution domain where increased node density (equivalently, reduction in the spacing between nodes) can decrease the error in the solution. An adaptive procedure for adding nodes to the domain for both the approximation of derivatives and the approximate evaluation of definite integrals is described. This method efficiently computes the error estimate at a set of prescribed points and adds new nodes for approximation where the error is too large. Computational experiments demonstrate close agreement between the error estimate and actual absolute error in the approximation. Such methods are necessary or desirable when approximating solutions to PDE (or in the case of quadrature/cubature), where the initial data and subsequent solution (or integrand) exhibit localized features that require significant refinement to resolve and where uniform increases in the density of nodes across the entire computational domain is not possible or too burdensome.

The theory of finite simple groups is a (rather unexplored) area likely to provide interesting computational problems and modelling tools useful in a cryptographic context. In this note, we review some applications of finite non-abelian simple groups to cryptography and discuss different scenarios in which this theory is clearly central, providing the relevant definitions to make the material accessible to both cryptographers and group theorists, in the hope of stimulating further interaction between these two (non-disjoint) communities. In particular, we look at constructions based on various group-theoretic factorization problems, review group theoretical hash functions, and discuss fully homomorphic encryption using simple groups. The Hidden Subgroup Problem is also briefly discussed in this context.

I study how the shadow prices of a linear program that allocates an endowment of $n\beta \in \mathbb{R}^{m}$ resources to $n$ customers behave as $n \rightarrow \infty$. I show the shadow prices (i) adhere to a concentration of measure, (ii) converge to a multivariate normal under central-limit-theorem scaling, and (iii) have a variance that decreases like $\Theta(1/n)$. I use these results to prove that the expected regret in \cites{Li2019b} online linear program is $\Theta(\log n)$, both when the customer variable distribution is known upfront and must be learned on the fly. I thus tighten \citeauthors{Li2019b} upper bound from $O(\log n \log \log n)$ to $O(\log n)$, and extend \cites{Lueker1995} $\Omega(\log n)$ lower bound to the multi-dimensional setting. I illustrate my new techniques with a simple analysis of \cites{Arlotto2019} multisecretary problem.

The computation of approximating e^tA B, where A is a large sparse matrix and B is a rectangular matrix, serves as a crucial element in numerous scientific and engineering calculations. A powerful way to consider this problem is to use Krylov subspace methods. The purpose of this work is to approximate the matrix exponential and some Cauchy-Stieltjes functions on a block vectors B of R^n*p using a rational block Lanczos algorithm. We also derive some error estimates and error bound for the convergence of the rational approximation and finally numerical results attest to the computational efficiency of the proposed method.

We study several polygonal curve problems under the Fr\'{e}chet distance via algebraic geometric methods. Let $\mathbb{X}_m^d$ and $\mathbb{X}_k^d$ be the spaces of all polygonal curves of $m$ and $k$ vertices in $\mathbb{R}^d$, respectively. We assume that $k \leq m$. Let $\mathcal{R}^d_{k,m}$ be the set of ranges in $\mathbb{X}_m^d$ for all possible metric balls of polygonal curves in $\mathbb{X}_k^d$ under the Fr\'{e}chet distance. We prove a nearly optimal bound of $O(dk\log (km))$ on the VC dimension of the range space $(\mathbb{X}_m^d,\mathcal{R}_{k,m}^d)$, improving on the previous $O(d^2k^2\log(dkm))$ upper bound and approaching the current $\Omega(dk\log k)$ lower bound. Our upper bound also holds for the weak Fr\'{e}chet distance. We also obtain exact solutions that are hitherto unknown for curve simplification, range searching, nearest neighbor search, and distance oracle.

In this paper, we employ general results on the value distributions of perfect nonlinear functions from $\mathbb{F}_{p^m}$ to $\mathbb{F}_p$ together with a specific group action to give a unified approach to determining the weight distributions of two classes of linear codes over $\mathbb{F}_p$ constructed from perfect nonlinear functions, where $p$ is an odd prime number and $m\in\mathbb{N}_+$.

We present a novel deep learning method for computing eigenvalues of the fractional Schr\"odinger operator. Our approach combines a newly developed loss function with an innovative neural network architecture that incorporates prior knowledge of the problem. These improvements enable our method to handle both high-dimensional problems and problems posed on irregular bounded domains. We successfully compute up to the first 30 eigenvalues for various fractional Schr\"odinger operators. As an application, we share a conjecture to the fractional order isospectral problem that has not yet been studied.

Getting standard multigrid to work efficiently for the high-frequency Helmholtz equation has been an open problem in applied mathematics for years. Much effort has been dedicated to finding solution methods which can use multigrid components to obtain solvers with a linear time complexity. In this work we present one among the first stand-alone multigrid solvers for the 2D Helmholtz equation using both a constant and non-constant wavenumber model problem. We use standard smoothing techniques and do not impose any restrictions on the number of grid points per wavelength on the coarse-grid. As a result we are able to obtain a full V- and W-cycle algorithm. The key features of the algorithm are the use of higher-order inter-grid transfer operators combined with a complex constant in the coarsening process. Using weighted-Jacobi smoothing, we obtain a solver which is $h-$independent and scales linearly with the wavenumber $k$. Numerical results using 1 to 5 GMRES(3) smoothing steps approach $k-$ and $h-$ independent convergence, when combined with the higher-order inter-grid transfer operators and a small or even zero complex shift. The proposed algorithm provides an important step towards the perpetuating branch of research in finding scalable solvers for challenging wave propagation problems.

Shannon proved that almost all Boolean functions require a circuit of size $\Theta(2^n/n)$. We prove a quantum analog of this classical result. Unlike in the classical case the number of quantum circuits of any fixed size that we allow is uncountably infinite. Our main tool is a classical result in real algebraic geometry bounding the number of realizable sign conditions of any finite set of real polynomials in many variables.

北京阿比特科技有限公司