Industry 4.0 uses a subset of the IoT, named Industrial IoT (IIoT), to achieve connectivity, interoperability, and decentralization. The deployment of industrial networks rarely considers security by design, but this becomes imperative in smart manufacturing as connectivity increases. The combination of OT and IT infrastructures in Industry 4.0 adds new security threats beyond those of traditional industrial networks. Defence-in-Depth (DiD) strategies tackle the complexity of this problem by providing multiple defense layers, each of these focusing on a particular set of threats. Additionally, the strict requirements of IIoT networks demand lightweight encryption algorithms. Nevertheless, these ciphers must provide E2E (End-to-End) security, as data passes through intermediate entities or middleboxes before reaching their destination. If compromised, middleboxes could expose vulnerable information to potential attackers if it is not encrypted throughout this path. This paper presents an analysis of the most relevant security strategies in Industry 4.0, focusing primarily on DiD. With these in mind, it proposes a combination of DiD, an encryption algorithm called Attribute-Based-Encryption (ABE), and object security (i.e., OSCORE) to get an E2E security approach. This analysis is a critical first step to developing more complex and lightweight security frameworks suitable for Industry 4.0.
The Internet of Things (IoT) is one of the emerging technologies that has grabbed the attention of researchers from academia and industry. The idea behind Internet of things is the interconnection of internet enabled things or devices to each other and to humans, to achieve some common goals. In near future IoT is expected to be seamlessly integrated into our environment and human will be wholly solely dependent on this technology for comfort and easy life style. Any security compromise of the system will directly affect human life. Therefore security and privacy of this technology is foremost important issue to resolve. In this paper we present a thorough study of security problems in IoT and classify possible cyberattacks on each layer of IoT architecture. We also discuss challenges to traditional security solutions such as cryptographic solutions, authentication mechanisms and key management in IoT. Device authentication and access controls is an essential area of IoT security, which is not surveyed so far. We spent our efforts to bring the state of the art device authentication and access control techniques on a single paper.
The growing complexity of Cyber-Physical Systems (CPS) and challenges in ensuring safety and security have led to the increasing use of deep learning methods for accurate and scalable anomaly detection. However, machine learning (ML) models often suffer from low performance in predicting unexpected data and are vulnerable to accidental or malicious perturbations. Although robustness testing of deep learning models has been extensively explored in applications such as image classification and speech recognition, less attention has been paid to ML-driven safety monitoring in CPS. This paper presents the preliminary results on evaluating the robustness of ML-based anomaly detection methods in safety-critical CPS against two types of accidental and malicious input perturbations, generated using a Gaussian-based noise model and the Fast Gradient Sign Method (FGSM). We test the hypothesis of whether integrating the domain knowledge (e.g., on unsafe system behavior) with the ML models can improve the robustness of anomaly detection without sacrificing accuracy and transparency. Experimental results with two case studies of Artificial Pancreas Systems (APS) for diabetes management show that ML-based safety monitors trained with domain knowledge can reduce on average up to 54.2% of robustness error and keep the average F1 scores high while improving transparency.
We introduce a subclass of concurrent game structures (CGS) with imperfect information in which agents are endowed with private data-sharing capabilities. Importantly, our CGSs are such that it is still decidable to model-check these CGSs against a relevant fragment of ATL. These systems can be thought as a generalisation of architectures allowing information forks, in the sense that, in the initial states of the system, we allow information forks from agents outside a given set A to agents inside this A. For this reason, together with the fact that the communication in our models underpins a specialised form of broadcast, we call our formalism A-cast systems. To underline, the fragment of ATL for which we show the model-checking problem to be decidable over A-cast is a large and significant one; it expresses coalitions over agents in any subset of the set A. Indeed, as we show, our systems and this ATL fragments can encode security problems that are notoriously hard to express faithfully: terrorist-fraud attacks in identity schemes.
Integrating security activities into the software development lifecycle to detect security flaws is essential for any project. These activities produce reports that must be managed and looped back to project stakeholders like developers to enable security improvements. This so-called Feedback Loop is a crucial part of any project and is required by various industrial security standards and models. However, the operation of this loop presents a variety of challenges. These challenges range from ensuring that feedback data is of sufficient quality over providing different stakeholders with the information they need to the enormous effort to manage the reports. In this paper, we propose a novel approach for treating findings from security activity reports as belief in a Knowledge Base (KB). By utilizing continuous logical inferences, we derive information necessary for practitioners and address existing challenges in the industry. This approach is currently evaluated in industrial DevOps projects, using data from continuous security testing.
Due to the current horizontal business model that promotes increasing reliance on untrusted third-party Intellectual Properties (IPs), CAD tools, and design facilities, hardware Trojan attacks have become a serious threat to the semiconductor industry. Development of effective countermeasures against hardware Trojan attacks requires: (1) fast and reliable exploration of the viable Trojan attack space for a given design and (2) a suite of high-quality Trojan-inserted benchmarks that meet specific standards. The latter has become essential for the development and evaluation of design/verification solutions to achieve quantifiable assurance against Trojan attacks. While existing static benchmarks provide a baseline for comparing different countermeasures, they only enumerate a limited number of handcrafted Trojans from the complete Trojan design space. To accomplish these dual objectives, in this paper, we present MIMIC, a novel AI-guided framework for automatic Trojan insertion, which can create a large population of valid Trojans for a given design by mimicking the properties of a small set of known Trojans. While there exist tools to automatically insert Trojan instances using fixed Trojan templates, they cannot analyze known Trojan attacks for creating new instances that accurately capture the threat model. MIMIC works in two major steps: (1) it analyzes structural and functional features of existing Trojan populations in a multi-dimensional space to train machine learning models and generate a large number of "virtual Trojans" of the given design, (2) next, it binds them into the design by matching their functional/structural properties with suitable nets of the internal logic structure. We have developed a complete tool flow for MIMIC, extensively evaluated the framework by exploring several use-cases, and quantified its effectiveness to demonstrate highly promising results.
The real-world use cases of Machine Learning (ML) have exploded over the past few years. However, the current computing infrastructure is insufficient to support all real-world applications and scenarios. Apart from high efficiency requirements, modern ML systems are expected to be highly reliable against hardware failures as well as secure against adversarial and IP stealing attacks. Privacy concerns are also becoming a first-order issue. This article summarizes the main challenges in agile development of efficient, reliable and secure ML systems, and then presents an outline of an agile design methodology to generate efficient, reliable and secure ML systems based on user-defined constraints and objectives.
Bluetooth technology has enabled short-range wireless communication for billions of devices. Bluetooth Low-Energy (BLE) variant aims at improving power consumption on battery-constrained devices. BLE-enabled devices broadcast information (e.g., as beacons) to nearby devices via advertisements. Unfortunately, such functionality can become a double-edged sword at the hands of attackers. In this paper, we primarily show how an attacker can exploit BLE advertisements to exfiltrate information from BLE-enable devices. In particular, our attack establishes a communication medium between two devices without requiring any prior authentication or pairing. We develop a proof-of-concept attack framework on the Android ecosystem and assess its performance via a thorough set of experiments. Our results indicate that such an exfiltration attack is indeed possible though with a low data rate. Nevertheless, we also demonstrate potential use cases and enhancements to our attack that can further its severeness. Finally, we discuss possible countermeasures to prevent such an attack.
Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.
Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.
While deep learning strategies achieve outstanding results in computer vision tasks, one issue remains. The current strategies rely heavily on a huge amount of labeled data. In many real-world problems it is not feasible to create such an amount of labeled training data. Therefore, researchers try to incorporate unlabeled data into the training process to reach equal results with fewer labels. Due to a lot of concurrent research, it is difficult to keep track of recent developments. In this survey we provide an overview of often used techniques and methods in image classification with fewer labels. We compare 21 methods. In our analysis we identify three major trends. 1. State-of-the-art methods are scaleable to real world applications based on their accuracy. 2. The degree of supervision which is needed to achieve comparable results to the usage of all labels is decreasing. 3. All methods share common techniques while only few methods combine these techniques to achieve better performance. Based on all of these three trends we discover future research opportunities.