亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have transformed NLP with their remarkable In-context Learning (ICL) capabilities. Automated assistants based on LLMs are gaining popularity; however, adapting them to novel tasks is still challenging. While colossal models excel in zero-shot performance, their computational demands limit widespread use, and smaller language models struggle without context. This paper investigates whether LLMs can generalize from labeled examples of predefined tasks to novel tasks. Drawing inspiration from biological neurons and the mechanistic interpretation of the Transformer architecture, we explore the potential for information sharing across tasks. We design a cross-task prompting setup with three LLMs and show that LLMs achieve significant performance improvements despite no examples from the target task in the context. Cross-task prompting leads to a remarkable performance boost of 107% for LLaMA-2 7B, 18.6% for LLaMA-2 13B, and 3.2% for GPT 3.5 on average over zero-shot prompting, and performs comparable to standard in-context learning. The effectiveness of generating pseudo-labels for in-task examples is demonstrated, and our analyses reveal a strong correlation between the effect of cross-task examples and model activation similarities in source and target input tokens. This paper offers a first-of-its-kind exploration of LLMs' ability to solve novel tasks based on contextual signals from different task examples.

相關內容

Recent advancements in Large Language Models (LLMs) have expanded their capabilities to multimodal contexts, including comprehensive video understanding. However, processing extensive videos such as 24-hour CCTV footage or full-length films presents significant challenges due to the vast data and processing demands. Traditional methods, like extracting key frames or converting frames to text, often result in substantial information loss. To address these shortcomings, we develop OmAgent, efficiently stores and retrieves relevant video frames for specific queries, preserving the detailed content of videos. Additionally, it features an Divide-and-Conquer Loop capable of autonomous reasoning, dynamically invoking APIs and tools to enhance query processing and accuracy. This approach ensures robust video understanding, significantly reducing information loss. Experimental results affirm OmAgent's efficacy in handling various types of videos and complex tasks. Moreover, we have endowed it with greater autonomy and a robust tool-calling system, enabling it to accomplish even more intricate tasks.

Structure-Based Drug Design (SBDD) focuses on generating valid ligands that strongly and specifically bind to a designated protein pocket. Several methods use machine learning for SBDD to generate these ligands in 3D space, conditioned on the structure of a desired protein pocket. Recently, diffusion models have shown success here by modeling the underlying distributions of atomic positions and types. While these methods are effective in considering the structural details of the protein pocket, they often fail to explicitly consider the binding affinity. Binding affinity characterizes how tightly the ligand binds to the protein pocket, and is measured by the change in free energy associated with the binding process. It is one of the most crucial metrics for benchmarking the effectiveness of the interaction between a ligand and protein pocket. To address this, we propose BADGER: Binding Affinity Diffusion Guidance with Enhanced Refinement. BADGER is a general guidance method to steer the diffusion sampling process towards improved protein-ligand binding, allowing us to adjust the distribution of the binding affinity between ligands and proteins. Our method is enabled by using a neural network (NN) to model the energy function, which is commonly approximated by AutoDock Vina (ADV). ADV's energy function is non-differentiable, and estimates the affinity based on the interactions between a ligand and target protein receptor. By using a NN as a differentiable energy function proxy, we utilize the gradient of our learned energy function as a guidance method on top of any trained diffusion model. We show that our method improves the binding affinity of generated ligands to their protein receptors by up to 60\%, significantly surpassing previous machine learning methods. We also show that our guidance method is flexible and can be easily applied to other diffusion-based SBDD frameworks.

Relation extraction (RE) involves identifying the relations between entities from underlying content. RE serves as the foundation for many natural language processing (NLP) and information retrieval applications, such as knowledge graph completion and question answering. In recent years, deep neural networks have dominated the field of RE and made noticeable progress. Subsequently, the large pre-trained language models have taken the state-of-the-art RE to a new level. This survey provides a comprehensive review of existing deep learning techniques for RE. First, we introduce RE resources, including datasets and evaluation metrics. Second, we propose a new taxonomy to categorize existing works from three perspectives, i.e., text representation, context encoding, and triplet prediction. Third, we discuss several important challenges faced by RE and summarize potential techniques to tackle these challenges. Finally, we outline some promising future directions and prospects in this field. This survey is expected to facilitate researchers' collaborative efforts to address the challenges of real-world RE systems.

Instruction-tuned Large Language Models (LLMs) have achieved remarkable performance across various benchmark tasks. While providing instructions to LLMs for guiding their generations is user-friendly, assessing their instruction-following capabilities is still unclarified due to a lack of evaluation metrics. In this paper, we focus on evaluating the instruction-following ability of LLMs in the context of story-ending generation, which requires diverse and context-specific instructions. We propose an automatic evaluation pipeline that utilizes a machine reading comprehension (MRC) model to determine whether the generated story-ending reflects instruction. Our findings demonstrate that our proposed metric aligns with human evaluation. Furthermore, our experiments confirm that recent open-source LLMs can achieve instruction-following performance close to GPT-3.5, as assessed through automatic evaluation.

Sentiment Analysis (SA) is a crucial aspect of Natural Language Processing (NLP), addressing subjective assessments in textual content. Syntactic parsing is useful in SA because explicit syntactic information can improve accuracy while providing explainability, but it tends to be a computational bottleneck in practice due to the slowness of parsing algorithms. This paper addresses said bottleneck by using a SEquence Labeling Syntactic Parser (SELSP) to inject syntax into SA. By treating dependency parsing as a sequence labeling problem, we greatly enhance the speed of syntax-based SA. SELSP is trained and evaluated on a ternary polarity classification task, demonstrating its faster performance and better accuracy in polarity prediction tasks compared to conventional parsers like Stanza and to heuristic approaches that use shallow syntactic rules for SA like VADER. This increased speed and improved accuracy make SELSP particularly appealing to SA practitioners in both research and industry. In addition, we test several sentiment dictionaries on our SELSP to see which one improves the performance in polarity prediction tasks. Moreover, we compare the SELSP with Transformer-based models trained on a 5-label classification task. The results show that dictionaries that capture polarity judgment variation provide better results than dictionaries that ignore polarity judgment variation. Moreover, we show that SELSP is considerably faster than Transformer-based models in polarity prediction tasks.

Nested Named Entity Recognition (NNER) focuses on addressing overlapped entity recognition. Compared to Flat Named Entity Recognition (FNER), annotated resources are scarce in the corpus for NNER. Data augmentation is an effective approach to address the insufficient annotated corpus. However, there is a significant lack of exploration in data augmentation methods for NNER. Due to the presence of nested entities in NNER, existing data augmentation methods cannot be directly applied to NNER tasks. Therefore, in this work, we focus on data augmentation for NNER and resort to more expressive structures, Composited-Nested-Label Classification (CNLC) in which constituents are combined by nested-word and nested-label, to model nested entities. The dataset is augmented using the Composited-Nested-Learning (CNL). In addition, we propose the Confidence Filtering Mechanism (CFM) for a more efficient selection of generated data. Experimental results demonstrate that this approach results in improvements in ACE2004 and ACE2005 and alleviates the impact of sample imbalance.

The growing popularity of Large Language Models has sparked interest in context compression for Large Language Models (LLMs). However, the performance of previous methods degrades dramatically as compression ratios increase, sometimes even falling to the closed-book level. This decline can be attributed to the loss of key information during the compression process. Our preliminary study supports this hypothesis, emphasizing the significance of retaining key information to maintain model performance under high compression ratios. As a result, we introduce Query-Guided Compressor (QGC), which leverages queries to guide the context compression process, effectively preserving key information within the compressed context. Additionally, we employ a dynamic compression strategy. We validate the effectiveness of our proposed QGC on the Question Answering task, including NaturalQuestions, TriviaQA, and HotpotQA datasets. Experimental results show that QGC can consistently perform well even at high compression ratios, which also offers significant benefits in terms of inference cost and throughput.

Speech segmentation is an essential part of speech translation (ST) systems in real-world scenarios. Since most ST models are designed to process speech segments, long-form audio must be partitioned into shorter segments before translation. Recently, data-driven approaches for the speech segmentation task have been developed. Although the approaches improve overall translation quality, a performance gap exists due to a mismatch between the models and ST systems. In addition, the prior works require large self-supervised speech models, which consume significant computational resources. In this work, we propose a segmentation model that achieves better speech translation quality with a small model size. We propose an ASR-with-punctuation task as an effective pre-training strategy for the segmentation model. We also show that proper integration of the speech segmentation model into the underlying ST system is critical to improve overall translation quality at inference time.

Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional human-annotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM's performance across a variety of benchmarks and even outperform models trained through direct preference optimization (DPO) supplemented with extra GPT-4 preference data. This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents. Codes are available at //github.com/uclaml/SPIN.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司