亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work highlights an approach for incorporating realistic uncertainties into scientific computing workflows based on finite elements, focusing on applications in computational mechanics and design optimization. We leverage Mat\'ern-type Gaussian random fields (GRFs) generated using the SPDE method to model aleatoric uncertainties, including environmental influences, variating material properties, and geometric ambiguities. Our focus lies on delivering practical GRF realizations that accurately capture imperfections and variations and understanding how they impact the predictions of computational models and the topology of optimized designs. We describe a numerical algorithm based on solving a generalized SPDE to sample GRFs on arbitrary meshed domains. The algorithm leverages established techniques and integrates seamlessly with the open-source finite element library MFEM and associated scientific computing workflows, like those found in industrial and national laboratory settings. Our solver scales efficiently for large-scale problems and supports various domain types, including surfaces and embedded manifolds. We showcase its versatility through biomechanics and topology optimization applications. The flexibility and efficiency of SPDE-based GRF generation empower us to run large-scale optimization problems on 2D and 3D domains, including finding optimized designs on embedded surfaces, and to generate topologies beyond the reach of conventional techniques. Moreover, these capabilities allow us to model geometric uncertainties of reconstructed submanifolds, such as the surfaces of cerebral aneurysms. In addition to offering benefits in these specific domains, the proposed techniques transcend specific applications and generalize to arbitrary forward and backward problems in uncertainty quantification involving finite elements.

相關內容

Highly resolved finite element simulations of a laser beam welding process are considered. The thermomechanical behavior of this process is modeled with a set of thermoelasticity equations resulting in a nonlinear, nonsymmetric saddle point system. Newton's method is used to solve the nonlinearity and suitable domain decomposition preconditioners are applied to accelerate the convergence of the iterative method used to solve all linearized systems. Since a onelevel Schwarz preconditioner is in general not scalable, a second level has to be added. Therefore, the construction and numerical analysis of a monolithic, twolevel overlapping Schwarz approach with the GDSW (Generalized Dryja-Smith-Widlund) coarse space and an economic variant thereof are presented here.

Many environmental processes such as rainfall, wind or snowfall are inherently spatial and the modelling of extremes has to take into account that feature. In addition, environmental processes are often attached with an angle, e.g., wind speed and direction or extreme snowfall and time of occurrence in year. This article proposes a Bayesian hierarchical model with a conditional independence assumption that aims at modelling simultaneously spatial extremes and an angular component. The proposed model relies on the extreme value theory as well as recent developments for handling directional statistics over a continuous domain. Working within a Bayesian setting, a Gibbs sampler is introduced whose performances are analysed through a simulation study. The paper ends with an application on extreme wind speed in France. Results show that extreme wind events in France are mainly coming from West apart from the Mediterranean part of France and the Alps.

Generalized linear models (GLMs) arguably represent the standard approach for statistical regression beyond the Gaussian likelihood scenario. When Bayesian formulations are employed, the general absence of a tractable posterior distribution has motivated the development of deterministic approximations, which are generally more scalable than sampling techniques. Among them, expectation propagation (EP) showed extreme accuracy, usually higher than many variational Bayes solutions. However, the higher computational cost of EP posed concerns about its practical feasibility, especially in high-dimensional settings. We address these concerns by deriving a novel efficient formulation of EP for GLMs, whose cost scales linearly in the number of covariates p. This reduces the state-of-the-art O(p^2 n) per-iteration computational cost of the EP routine for GLMs to O(p n min{p,n}), with n being the sample size. We also show that, for binary models and log-linear GLMs approximate predictive means can be obtained at no additional cost. To preserve efficient moment matching for count data, we propose employing a combination of log-normal Laplace transform approximations, avoiding numerical integration. These novel results open the possibility of employing EP in settings that were believed to be practically impossible. Improvements over state-of-the-art approaches are illustrated both for simulated and real data. The efficient EP implementation is available at //github.com/niccoloanceschi/EPglm.

We improve the performance of multigrid solvers on many-core architectures with cache hierarchies by reorganizing operations in the smoothing step to minimize memory transfers. We focus on patch smoothers, which offer robust convergence rates with respect to the finite element degree for various equations, in the setting of multiplicative subspace correction for numerical efficiency. By combining the computation of local residuals with local solvers, we increase the locality of the problem and thus reduce data transfers. The thread-parallel implementation of this algorithm is based on coloring, which contradicts cache efficiency. We improve data locality by rearranging the loop into batches so that more data can be reused. The organization of consecutive batches prioritizes data locality.

In this work, we present a model order reduction technique for nonlinear structures assembled from components.The reduced order model is constructed by reducing the substructures with proper orthogonal decomposition and connecting them by a mortar-tied contact formulation. The snapshots for the substructure projection matrices are computed on the substructure level by the proper orthogonal decomposition (POD) method. The snapshots are computed using a random sampling procedure based on a parametrization of boundary conditions. To reduce the computational effort of the snapshot computation full-order simulations of the substructures are only computed when the error of the reduced solution is above a threshold. In numerical examples, we show the accuracy and efficiency of the method for nonlinear problems involving material and geometric nonlinearity as well as non-matching meshes. We are able to predict solutions of systems that we did not compute in our snapshots.

Machine learning (ML) methods, which fit to data the parameters of a given parameterized model class, have garnered significant interest as potential methods for learning surrogate models for complex engineering systems for which traditional simulation is expensive. However, in many scientific and engineering settings, generating high-fidelity data on which to train ML models is expensive, and the available budget for generating training data is limited, so that high-fidelity training data are scarce. ML models trained on scarce data have high variance, resulting in poor expected generalization performance. We propose a new multifidelity training approach for scientific machine learning via linear regression that exploits the scientific context where data of varying fidelities and costs are available: for example, high-fidelity data may be generated by an expensive fully resolved physics simulation whereas lower-fidelity data may arise from a cheaper model based on simplifying assumptions. We use the multifidelity data within an approximate control variate framework to define new multifidelity Monte Carlo estimators for linear regression models. We provide bias and variance analysis of our new estimators that guarantee the approach's accuracy and improved robustness to scarce high-fidelity data. Numerical results demonstrate that our multifidelity training approach achieves similar accuracy to the standard high-fidelity only approach with orders-of-magnitude reduced high-fidelity data requirements.

Column selection is an essential tool for structure-preserving low-rank approximation, with wide-ranging applications across many fields, such as data science, machine learning, and theoretical chemistry. In this work, we develop unified methodologies for fast, efficient, and theoretically guaranteed column selection. First we derive and implement a sparsity-exploiting deterministic algorithm applicable to tasks including kernel approximation and CUR decomposition. Next, we develop a matrix-free formalism relying on a randomization scheme satisfying guaranteed concentration bounds, applying this construction both to CUR decomposition and to the approximation of matrix functions of graph Laplacians. Importantly, the randomization is only relevant for the computation of the scores that we use for column selection, not the selection itself given these scores. For both deterministic and matrix-free algorithms, we bound the performance favorably relative to the expected performance of determinantal point process (DPP) sampling and, in select scenarios, that of exactly optimal subset selection. The general case requires new analysis of the DPP expectation. Finally, we demonstrate strong real-world performance of our algorithms on a diverse set of example approximation tasks.

We consider functional linear regression models where functional outcomes are associated with scalar predictors by coefficient functions with shape constraints, such as monotonicity and convexity, that apply to sub-domains of interest. To validate the partial shape constraints, we propose testing a composite hypothesis of linear functional constraints on regression coefficients. Our approach employs kernel- and spline-based methods within a unified inferential framework, evaluating the statistical significance of the hypothesis by measuring an $L^2$-distance between constrained and unconstrained model fits. In the theoretical study of large-sample analysis under mild conditions, we show that both methods achieve the standard rate of convergence observed in the nonparametric estimation literature. Through numerical experiments of finite-sample analysis, we demonstrate that the type I error rate keeps the significance level as specified across various scenarios and that the power increases with sample size, confirming the consistency of the test procedure under both estimation methods. Our theoretical and numerical results provide researchers the flexibility to choose a method based on computational preference. The practicality of partial shape-constrained inference is illustrated by two data applications: one involving clinical trials of NeuroBloc in type A-resistant cervical dystonia and the other with the National Institute of Mental Health Schizophrenia Study.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司