亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The explosion of data in recent years is driving individuals to leverage technology to generate insights. Traditional tools bring heavy learning overheads and the requirement for understanding complex charting techniques. Such barriers can hinder those who may benefit from harnessing data for informed decision making. The emerging field of generating data visualisations from natural language text (NL2VIS) addresses this issue. This study showcases Chat2VIS, a state-of-the-art NL2VIS solution. It capitalises on the latest in AI technology with the upsurge in pre-trained large language models (LLMs) such as GPT-3, Codex, and ChatGPT. Furthermore, the rise in natural language interfaces (NLI) and chatbots is taking centre stage. This work illustrates how Chat2VIS leverages similar techniques to fine-tune data visualisation components beyond that demonstrated in previous approaches. In addition, this paper presents the flexibility of Chat2VIS to comprehend multilingual natural language requests. No other NL2VIS system has demonstrated this unique talent. In concluding, this research provides quantitative benchmarking evaluations to contribute to the paucity of NL2VIS standards.

相關內容

數據可視化是關于數據之視覺表現形式的研究。

Multi-object rearrangement is a crucial skill for service robots, and commonsense reasoning is frequently needed in this process. However, achieving commonsense arrangements requires knowledge about objects, which is hard to transfer to robots. Large language models (LLMs) are one potential source of this knowledge, but they do not naively capture information about plausible physical arrangements of the world. We propose LLM-GROP, which uses prompting to extract commonsense knowledge about semantically valid object configurations from an LLM and instantiates them with a task and motion planner in order to generalize to varying scene geometry. LLM-GROP allows us to go from natural-language commands to human-aligned object rearrangement in varied environments. Based on human evaluations, our approach achieves the highest rating while outperforming competitive baselines in terms of success rate while maintaining comparable cumulative action costs. Finally, we demonstrate a practical implementation of LLM-GROP on a mobile manipulator in real-world scenarios. Supplementary materials are available at: //sites.google.com/view/llm-grop

Open-Domain Question Answering (ODQA) aims at answering factoid questions without explicitly providing specific background documents. In a zero-shot setting, this task is more challenging since no data is available to train customized models like Retriever-Readers. Recently, Large Language Models (LLMs) like GPT-3 have shown their power in zero-shot ODQA with direct prompting methods, but these methods are still far from releasing the full powerfulness of LLMs only in an implicitly invoking way. In this paper, we propose a Self-Prompting framework to explicitly utilize the massive knowledge stored in the parameters of LLMs and their strong instruction understanding abilities. Concretely, we prompt LLMs step by step to generate multiple pseudo QA pairs with background passages and explanations from scratch and then use those generated elements for in-context learning. Experimental results show our method surpasses previous SOTA methods significantly on three widely-used ODQA datasets, and even achieves comparable performance with some Retriever-Reader models fine-tuned on full training data.

Multi-modal visual understanding of images with prompts involves using various visual and textual cues to enhance the semantic understanding of images. This approach combines both vision and language processing to generate more accurate predictions and recognition of images. By utilizing prompt-based techniques, models can learn to focus on certain features of an image to extract useful information for downstream tasks. Additionally, multi-modal understanding can improve upon single modality models by providing more robust representations of images. Overall, the combination of visual and textual information is a promising area of research for advancing image recognition and understanding. In this paper we will try an amount of prompt design methods and propose a new method for better extraction of semantic information

Automated code generation can be a powerful technique for software development, significantly reducing developers' efforts and time required to create new code by generating it automatically based on requirements. Recently, OpenAI's language model ChatGPT has emerged as a powerful tool for generating human-like responses to a wide range of textual inputs (i.e., prompts), including those related to code generation. However, the effectiveness of ChatGPT for code generation is not well understood, and the generation performance could be heavily influenced by the choice of prompt. To answer these questions, we conducted experiments using the CodeXGlue dataset to evaluate ChatGPT's capabilities for two code generation tasks, including text-to-code and code-to-code generation. We designed prompts by leveraging the chain-of-thought strategy with multi-step optimizations. Our results showed that by carefully designing prompts to guide ChatGPT, the generation performance can be improved substantially. We also analyzed the factors that influenced the prompt design and provided insights that could guide future research.

Lexical matching remains the de facto evaluation method for open-domain question answering (QA). Unfortunately, lexical matching fails completely when a plausible candidate answer does not appear in the list of gold answers, which is increasingly the case as we shift from extractive to generative models. The recent success of large language models (LLMs) for QA aggravates lexical matching failures since candidate answers become longer, thereby making matching with the gold answers even more challenging. Without accurate evaluation, the true progress in open-domain QA remains unknown. In this paper, we conduct a thorough analysis of various open-domain QA models, including LLMs, by manually evaluating their answers on a subset of NQ-open, a popular benchmark. Our assessments reveal that while the true performance of all models is significantly underestimated, the performance of the InstructGPT (zero-shot) LLM increases by nearly +60%, making it on par with existing top models, and the InstructGPT (few-shot) model actually achieves a new state-of-the-art on NQ-open. We also find that more than 50% of lexical matching failures are attributed to semantically equivalent answers. We further demonstrate that regex matching ranks QA models consistent with human judgments, although still suffering from unnecessary strictness. Finally, we demonstrate that automated evaluation models are a reasonable surrogate for lexical matching in some circumstances, but not for long-form answers generated by LLMs. The automated models struggle in detecting hallucinations in LLM answers and are thus unable to evaluate LLMs. At this time, there appears to be no substitute for human evaluation.

Despite the fact that large-scale Language Models (LLM) have achieved SOTA performances on a variety of NLP tasks, its performance on NER is still significantly below supervised baselines. This is due to the gap between the two tasks the NER and LLMs: the former is a sequence labeling task in nature while the latter is a text-generation model. In this paper, we propose GPT-NER to resolve this issue. GPT-NER bridges the gap by transforming the sequence labeling task to a generation task that can be easily adapted by LLMs e.g., the task of finding location entities in the input text "Columbus is a city" is transformed to generate the text sequence "@@Columbus## is a city", where special tokens @@## marks the entity to extract. To efficiently address the "hallucination" issue of LLMs, where LLMs have a strong inclination to over-confidently label NULL inputs as entities, we propose a self-verification strategy by prompting LLMs to ask itself whether the extracted entities belong to a labeled entity tag. We conduct experiments on five widely adopted NER datasets, and GPT-NER achieves comparable performances to fully supervised baselines, which is the first time as far as we are concerned. More importantly, we find that GPT-NER exhibits a greater ability in the low-resource and few-shot setups, when the amount of training data is extremely scarce, GPT-NER performs significantly better than supervised models. This demonstrates the capabilities of GPT-NER in real-world NER applications where the number of labeled examples is limited.

Humans learn language via multi-modal knowledge. However, due to the text-only pre-training scheme, most existing pre-trained language models (PLMs) are hindered from the multi-modal information. To inject visual knowledge into PLMs, existing methods incorporate either the text or image encoder of vision-language models (VLMs) to encode the visual information and update all the original parameters of PLMs for knowledge fusion. In this paper, we propose a new plug-and-play module, X-adapter, to flexibly leverage the aligned visual and textual knowledge learned in pre-trained VLMs and efficiently inject them into PLMs. Specifically, we insert X-adapters into PLMs, and only the added parameters are updated during adaptation. To fully exploit the potential in VLMs, X-adapters consist of two sub-modules, V-expert and T-expert, to fuse VLMs' image and text representations, respectively. We can opt for activating different sub-modules depending on the downstream tasks. Experimental results show that our method can significantly improve the performance on object-color reasoning and natural language understanding (NLU) tasks compared with PLM baselines.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

北京阿比特科技有限公司