亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate both theoretically and numerically the consistency between the nonlinear discretization in full order models (FOMs) and reduced order models (ROMs) for incompressible flows. To this end, we consider two cases: (i) FOM-ROM consistency, i.e., when we use the same nonlinearity discretization in the FOM and ROM; and (ii) FOM-ROM inconsistency, i.e., when we use different nonlinearity discretizations in the FOM and ROM. Analytically, we prove that while the FOM-ROM consistency yields optimal error bounds, FOM-ROM inconsistency yields additional terms dependent on the FOM divergence error, which prevent the ROM from recovering the FOM as the number of modes increases. Computationally, we consider channel flow around a cylinder and Kelvin-Helmholtz instability, and show that FOM-ROM consistency yields significantly more accurate results than the FOM-ROM inconsistency.

相關內容

We consider stochastic differential equations (SDEs) driven by small L\'evy noise with some unknown parameters, and propose a new type of least squares estimators based on discrete samples from the SDEs. To approximate the increments of a process from the SDEs, we shall use not the usual Euler method, but the Adams method, that is, a well-known numerical approximation of the solution to the ordinary differential equation appearing in the limit of the SDE. We show the consistency of the proposed estimators as well as the asymptotic distribution in a suitable observation scheme. We also show that our estimators can be better than the usual LSE based on the Euler method in the finite sample performance.

In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and non-local problems, as well as regularity properties of these solutions in time and space. We then derive error bounds between the solution to the non-local problem and that of the local one, both in continuous-time and Backward Euler time discretization. We then turn to studying continuum limits of non-local problems defined on random weighted graphs with $n$ vertices. In particular, we establish that if the kernel scale parameter decreases at an appropriate rate as $n$ grows, then almost surely, the solution of the problem on graphs converges uniformly to the viscosity solution of the local problem as the time step vanishes and the number vertices $n$ grows large.

High-resolution simulations of particle-based kinetic plasma models typically require a high number of particles and thus often become computationally intractable. This is exacerbated in multi-query simulations, where the problem depends on a set of parameters. In this work, we derive reduced order models for the semi-discrete Hamiltonian system resulting from a geometric particle-in-cell approximation of the parametric Vlasov-Poisson equations. Since the problem's non-dissipative and highly nonlinear nature makes it reducible only locally in time, we adopt a nonlinear reduced basis approach where the reduced phase space evolves in time. This strategy allows a significant reduction in the number of simulated particles, but the evaluation of the nonlinear operators associated with the Vlasov-Poisson coupling remains computationally expensive. We propose a novel reduction of the nonlinear terms that combines adaptive parameter sampling and hyper-reduction techniques to address this. The proposed approach allows decoupling the operations having a cost dependent on the number of particles from those that depend on the instances of the required parameters. In particular, in each time step, the electric potential is approximated via dynamic mode decomposition (DMD) and the particle-to-grid map via a discrete empirical interpolation method (DEIM). These approximations are constructed from data obtained from a past temporal window at a few selected values of the parameters to guarantee a computationally efficient adaptation. The resulting DMD-DEIM reduced dynamical system retains the Hamiltonian structure of the full model, provides good approximations of the solution, and can be solved at a reduced computational cost.

We propose a new unfitted finite element method for simulation of two-phase flows in presence of insoluble surfactant. The key features of the method are 1) discrete conservation of surfactant mass; 2) the possibility of having meshes that do not conform to the evolving interface separating the immiscible fluids; 3) accurate approximation of quantities with weak or strong discontinuities across evolving geometries such as the velocity field and the pressure. The new discretization of the incompressible Navier--Stokes equations coupled to the convection-diffusion equation modeling the surfactant transport on evolving surfaces is based on a space-time cut finite element formulation with quadrature in time and a stabilization term in the weak formulation that provides function extension. The proposed strategy utilize the same computational mesh for the discretization of the surface Partial Differential Equation (PDE) and the bulk PDEs and can be combined with different techniques for representing and evolving the interface, here the level set method is used. Numerical simulations in both two and three space dimensions are presented including simulations showing the role of surfactant in the interaction between two drops.

In this paper we consider a linearized variable-time-step two-step backward differentiation formula (BDF2) scheme for solving nonlinear parabolic equations. The scheme is constructed by using the variable time-step BDF2 for the linear term and a Newton linearized method for the nonlinear term in time combining with a Galerkin finite element method (FEM) in space. We prove the unconditionally optimal error estimate of the proposed scheme under mild restrictions on the ratio of adjacent time-steps, i.e. $0<r_k < r_{\max} \approx 4.8645$ and on the maximum time step. The proof involves the discrete orthogonal convolution (DOC) and discrete complementary convolution (DCC) kernels, and the error splitting approach. In addition, our analysis also shows that the first level solution $u^1$ obtained by BDF1 (i.e. backward Euler scheme) does not cause the loss of global accuracy of second order. Numerical examples are provided to demonstrate our theoretical results.

The paper discusses a reuse of matrix factorization as a building block in the Augmented Lagrangian (AL) and modified AL preconditioners for non-symmetric saddle point linear algebraic systems. The strategy is applied to solve two-dimensional incompressible fluid problems with efficiency rates independent of the Reynolds number. The solver is then tested to simulate motion of a surface fluid, an example of a 2D flow motivated by an interest in lateral fluidity of inextensible viscous membranes. Numerical examples include the Kelvin--Helmholtz instability problem posed on the sphere and on the torus. Some new eigenvalue estimates for the AL preconditioner are derived.

High-resolution simulations of particle-based kinetic plasma models typically require a high number of particles and thus often become computationally intractable. This is exacerbated in multi-query simulations, where the problem depends on a set of parameters. In this work, we derive reduced order models for the semi-discrete Hamiltonian system resulting from a geometric particle-in-cell approximation of the parametric Vlasov-Poisson equations. Since the problem's non-dissipative and highly nonlinear nature makes it reducible only locally in time, we adopt a nonlinear reduced basis approach where the reduced phase space evolves in time. This strategy allows a significant reduction in the number of simulated particles, but the evaluation of the nonlinear operators associated with the Vlasov-Poisson coupling remains computationally expensive. We propose a novel reduction of the nonlinear terms that combines adaptive parameter sampling and hyper-reduction techniques to address this. The proposed approach allows decoupling the operations having a cost dependent on the number of particles from those that depend on the instances of the required parameters. In particular, in each time step, the electric potential is approximated via dynamic mode decomposition (DMD) and the particle-to-grid map via a discrete empirical interpolation method (DEIM). These approximations are constructed from data obtained from a past temporal window at a few selected values of the parameters to guarantee a computationally efficient adaptation. The resulting DMD-DEIM reduced dynamical system retains the Hamiltonian structure of the full model, provides good approximations of the solution, and can be solved at a reduced computational cost.

In this paper, we propose a new trace finite element method for the {Laplace-Beltrami} eigenvalue problem. The method is proposed directly on a smooth manifold which is implicitly given by a level-set function and require high order numerical quadrature on the surface. A comprehensive analysis for the method is provided. We show that the eigenvalues of the discrete Laplace-Beltrami operator coincide with only part of the eigenvalues of an embedded problem, which further corresponds to the finite eigenvalues for a singular generalized algebraic eigenvalue problem. The finite eigenvalues can be efficiently solved by a rank-completing perturbation algorithm in {\it Hochstenbach et al. SIAM J. Matrix Anal. Appl., 2019} \cite{hochstenbach2019solving}. We prove the method has optimal convergence rate. Numerical experiments verify the theoretical analysis and show that the geometric consistency can improve the numerical accuracy significantly.

We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. The goal is to obtain a discretization consisting of "local" problems that can be solved on parallel computers efficiently. However, this introduces significant sources of error that must be evaluated. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.

This paper considers the integrated problem of quay crane assignment, quay crane scheduling, yard location assignment, and vehicle dispatching operations at a container terminal. The main objective is to minimize vessel turnover times and maximize the terminal throughput, which are key economic drivers in terminal operations. Due to their computational complexities, these problems are not optimized jointly in existing work. This paper revisits this limitation and proposes Mixed Integer Programming (MIP) and Constraint Programming (CP) models for the integrated problem, under some realistic assumptions. Experimental results show that the MIP formulation can only solve small instances, while the CP model finds optimal solutions in reasonable times for realistic instances derived from actual container terminal operations.

北京阿比特科技有限公司