Societal biases present in pre-trained large language models are a critical issue as these models have been shown to propagate biases in countless downstream applications, rendering them unfair towards specific groups of people. Since large-scale retraining of these models from scratch is both time and compute-expensive, a variety of approaches have been previously proposed that de-bias a pre-trained model. While the majority of current state-of-the-art debiasing methods focus on changes to the training regime, in this paper, we propose data intervention strategies as a powerful yet simple technique to reduce gender bias in pre-trained models. Specifically, we empirically show that by fine-tuning a pre-trained model on only 10 de-biased (intervened) training examples, the tendency to favor any gender is significantly reduced. Since our proposed method only needs a few training examples, our few-shot debiasing approach is highly feasible and practical. Through extensive experimentation, we show that our debiasing technique performs better than competitive state-of-the-art baselines with minimal loss in language modeling ability.
This study compares the performance of a causal and a predictive model in modeling travel mode choice in three neighborhoods in Chicago. A causal discovery algorithm and a causal inference technique were used to extract the causal relationships in the mode choice decision making process and to estimate the quantitative causal effects between the variables both directly from observational data. The model results reveal that trip distance and vehicle ownership are the direct causes of mode choice in the three neighborhoods. Artificial neural network models were estimated to predict mode choice. Their accuracy was over 70%, and the SHAP values obtained measure the importance of each variable. We find that both the causal and predictive modeling approaches are useful for the purpose they serve. We also note that the study of mode choice behavior through causal modeling is mostly unexplored, yet it could transform our understanding of the mode choice behavior. Further research is needed to realize the full potential of these techniques in modeling mode choice.
Recent inversion methods have shown that real images can be inverted into StyleGAN's latent space and numerous edits can be achieved on those images thanks to the semantically rich feature representations of well-trained GAN models. However, extensive research has also shown that image inversion is challenging due to the trade-off between high-fidelity reconstruction and editability. In this paper, we tackle an even more difficult task, inverting erased images into GAN's latent space for realistic inpaintings and editings. Furthermore, by augmenting inverted latent codes with different latent samples, we achieve diverse inpaintings. Specifically, we propose to learn an encoder and mixing network to combine encoded features from erased images with StyleGAN's mapped features from random samples. To encourage the mixing network to utilize both inputs, we train the networks with generated data via a novel set-up. We also utilize higher-rate features to prevent color inconsistencies between the inpainted and unerased parts. We run extensive experiments and compare our method with state-of-the-art inversion and inpainting methods. Qualitative metrics and visual comparisons show significant improvements.
The quality of training data impacts the performance of pre-trained large language models (LMs). Given a fixed budget of tokens, we study how to best select data that leads to good downstream model performance across tasks. We develop a new framework based on a simple hypothesis: just as humans acquire interdependent skills in a deliberate order, language models also follow a natural order when learning a set of skills from their training data. If such an order exists, it can be utilized for improved understanding of LMs and for data-efficient training. Using this intuition, our framework formalizes the notion of a skill and of an ordered set of skills in terms of the associated data. First, using both synthetic and real data, we demonstrate that these ordered skill sets exist, and that their existence enables more advanced skills to be learned with less data when we train on their prerequisite skills. Second, using our proposed framework, we introduce an online data sampling algorithm, Skill-It, over mixtures of skills for both continual pre-training and fine-tuning regimes, where the objective is to efficiently learn multiple skills in the former and an individual skill in the latter. On the LEGO synthetic in the continual pre-training setting, Skill-It obtains 36.5 points higher accuracy than random sampling. On the Natural Instructions dataset in the fine-tuning setting, Skill-It reduces the validation loss on the target skill by 13.6% versus training on data associated with the target skill itself. We apply our skills framework on the recent RedPajama dataset to continually pre-train a 3B-parameter LM, achieving higher accuracy on the LM Evaluation Harness with 1B tokens than the baseline approach of sampling uniformly over data sources with 3B tokens.
The recent technology boost of large language models (LLMs) has empowered a variety of applications. However, there is very little research on understanding and improving LLMs' capability for the mental health domain. In this work, we present the first comprehensive evaluation of multiple LLMs, including Alpaca, Alpaca-LoRA, and GPT-3.5, on various mental health prediction tasks via online text data. We conduct a wide range of experiments, covering zero-shot prompting, few-shot prompting, and instruction finetuning. The results indicate the promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned model, Mental-Alpaca, outperforms GPT-3.5 (25 times bigger) by 16.7\% on balanced accuracy and performs on par with the state-of-the-art task-specific model. We summarize our findings into a set of action guidelines for future researchers, engineers, and practitioners on how to empower LLMs with better mental health domain knowledge and become an expert in mental health prediction tasks.
Despite the superior performance, Large Language Models~(LLMs) require significant computational resources for deployment and use. To overcome this issue, quantization methods have been widely applied to reduce the memory footprint of LLMs as well as increasing the inference rate. However, a major challenge is that low-bit quantization methods often lead to performance degradation. It is important to understand how quantization impacts the capacity of LLMs. Different from previous studies focused on overall performance, this work aims to investigate the impact of quantization on \emph{emergent abilities}, which are important characteristics that distinguish LLMs from small language models. Specially, we examine the abilities of in-context learning, chain-of-thought reasoning, and instruction-following in quantized LLMs. Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation on the test of these abilities. To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning. Our work derives a series of important findings to understand the impact of quantization on emergent abilities, and sheds lights on the possibilities of extremely low-bit quantization for LLMs.
We study few-shot Natural Language Understanding (NLU) tasks with Large Language Models (LLMs) in federated learning (FL) scenarios. It is a challenging task due to limited labeled data and communication capacities in FL, especially with mobile devices. Recent studies show LLMs can be prompted to perform few-shot NLU tasks like sentiment analysis and arithmetic reasoning. However, the huge sizes of LLMs result in high computation and communication costs, making classical FL schemes impractical. To address these challenges, we propose Low-Parameter Federated Learning (LP-FL). LP-FL combines few-shot prompt learning from LLMs with efficient communication and federating techniques. Our approach enables federated clients to assign soft labels to unlabeled data using gradually learned knowledge from the global model. Through iterative soft-label assigning, we continually expand the labeled set during the FL process. Additionally, to reduce computation and communication costs, LP-FL utilizes the Low-Rank Adaptation (LoRA) technique for compact learnable parameter construction, efficient local model fine-tuning, and affordable global model federation. LP-FL consistently outperforms Full-Parameter Federated Learning (FP-FL) in sentiment analysis tasks across various FL settings. Its resistance to overfitting allows LP-FL to equal or surpass centralized training in few-shot scenarios.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.The code and the pretrained models are available at //github.com/google-research/google-research/tree/master/albert.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.