亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The inverse probability weighting approach is popular for evaluating treatment effects in observational studies, but extreme propensity scores could bias the estimator and induce excessive variance. Recently, the overlap weighting approach has been proposed to alleviate this problem, which smoothly down-weighs the subjects with extreme propensity scores. Although advantages of overlap weighting have been extensively demonstrated in literature with continuous and binary outcomes, research on its performance with time-to-event or survival outcomes is limited. In this article, we propose two weighting estimators that combine propensity score weighting and inverse probability of censoring weighting to estimate the counterfactual survival functions. These estimators are applicable to the general class of balancing weights, which includes inverse probability weighting, trimming, and overlap weighting as special cases. We conduct simulations to examine the empirical performance of these estimators with different weighting schemes in terms of bias, variance, and 95% confidence interval coverage, under various degree of covariate overlap between treatment groups and censoring rate. We demonstrate that overlap weighting consistently outperforms inverse probability weighting and associated trimming methods in bias, variance, and coverage for time-to-event outcomes, and the advantages increase as the degree of covariate overlap between the treatment groups decreases.

相關內容

Optimal pricing, i.e., determining the price level that maximizes profit or revenue of a given product, is a vital task for the retail industry. To select such a quantity, one needs first to estimate the price elasticity from the product demand. Regression methods usually fail to recover such elasticities due to confounding effects and price endogeneity. Therefore, randomized experiments are typically required. However, elasticities can be highly heterogeneous depending on the location of stores, for example. As the randomization frequently occurs at the municipal level, standard difference-in-differences methods may also fail. Possible solutions are based on methodologies to measure the effects of treatments on a single (or just a few) treated unit(s) based on counterfactuals constructed from artificial controls. For example, for each city in the treatment group, a counterfactual may be constructed from the untreated locations. In this paper, we apply a novel high-dimensional statistical method to measure the effects of price changes on daily sales from a major retailer in Brazil. The proposed methodology combines principal components (factors) and sparse regressions, resulting in a method called Factor-Adjusted Regularized Method for Treatment evaluation (\texttt{FarmTreat}). The data consist of daily sales and prices of five different products over more than 400 municipalities. The products considered belong to the \emph{sweet and candies} category and experiments have been conducted over the years of 2016 and 2017. Our results confirm the hypothesis of a high degree of heterogeneity yielding very different pricing strategies over distinct municipalities.

Approximate Bayesian inference methods provide a powerful suite of tools for finding approximations to intractable posterior distributions. However, machine learning applications typically involve selecting actions, which -- in a Bayesian setting -- depend on the posterior distribution only via its contribution to expected utility. A growing body of work on loss-calibrated approximate inference methods has therefore sought to develop posterior approximations sensitive to the influence of the utility function. Here we introduce loss-calibrated expectation propagation (Loss-EP), a loss-calibrated variant of expectation propagation. This method resembles standard EP with an additional factor that "tilts" the posterior towards higher-utility decisions. We show applications to Gaussian process classification under binary utility functions with asymmetric penalties on False Negative and False Positive errors, and show how this asymmetry can have dramatic consequences on what information is "useful" to capture in an approximation.

We propose a Bayesian hierarchical model to simultaneously estimate mean based changepoints in spatially correlated functional time series. Unlike previous methods that assume a shared changepoint at all spatial locations or ignore spatial correlation, our method treats changepoints as a spatial process. This allows our model to respect spatial heterogeneity and exploit spatial correlations to improve estimation. Our method is derived from the ubiquitous cumulative sum (CUSUM) statistic that dominates changepoint detection in functional time series. However, instead of directly searching for the maximum of the CUSUM based processes, we build spatially correlated two-piece linear models with appropriate variance structure to locate all changepoints at once. The proposed linear model approach increases the robustness of our method to variability in the CUSUM process, which, combined with our spatial correlation model, improves changepoint estimation near the edges. We demonstrate through extensive simulation studies that our method outperforms existing functional changepoint estimators in terms of both estimation accuracy and uncertainty quantification, under either weak and strong spatial correlation, and weak and strong change signals. Finally, we demonstrate our method using a temperature data set and a coronavirus disease 2019 (COVID-19) study.

Ordinal cumulative probability models (CPMs) -- also known as cumulative link models -- such as the proportional odds regression model are typically used for discrete ordered outcomes, but can accommodate both continuous and mixed discrete/continuous outcomes since these are also ordered. Recent papers describe ordinal CPMs in this setting using non-parametric maximum likelihood estimation. We formulate a Bayesian CPM for continuous or mixed outcome data. Bayesian CPMs inherit many of the benefits of frequentist CPMs and have advantages with regard to interpretation, flexibility, and exact inference (within simulation error) for parameters and functions of parameters. We explore characteristics of the Bayesian CPM through simulations and a case study using HIV biomarker data. In addition, we provide the package 'bayesCPM' which implements Bayesian CPM models using the R interface to the Stan probabilistic programing language. The Bayesian CPM for continuous outcomes can be implemented with only minor modifications to the prior specification and, despite some limitations, has generally good statistical performance with moderate or large sample sizes.

Fairness aware data mining (FADM) aims to prevent algorithms from discriminating against protected groups. The literature has come to an impasse as to what constitutes explainable variability as opposed to discrimination. This distinction hinges on a rigorous understanding of the role of proxy variables; i.e., those variables which are associated both the protected feature and the outcome of interest. We demonstrate that fairness is achieved by ensuring impartiality with respect to sensitive characteristics and provide a framework for impartiality by accounting for different perspectives on the data generating process. In particular, fairness can only be precisely defined in a full-data scenario in which all covariates are observed. We then analyze how these models may be conservatively estimated via regression in partial-data settings. Decomposing the regression estimates provides insights into previously unexplored distinctions between explainable variability and discrimination that illuminate the use of proxy variables in fairness aware data mining.

This paper presents a parametric estimation method for ill-observed linear stationary Hawkes processes. When the exact locations of points are not observed, but only counts over time intervals of fixed size, methods based on the likelihood are not feasible. We show that spectral estimation based on Whittle's method is adapted to this case and provides consistent and asymptotically normal estimators, provided a mild moment condition on the reproduction function. Simulated datasets and a case-study illustrate the performances of the estimation, notably of the reproduction function even when time intervals are relatively large.

We propose a new estimation method for the spatial blind source separation model. The new estimation is based on an eigenanalysis of a positive definite matrix defined in terms of multiple spatial local covariance matrices, and, therefore, can handle moderately high-dimensional random fields. The consistency of the estimated mixing matrix is established with explicit error rates even when the eigen-gap decays to zero slowly. The proposed method is illustrated via both simulation and a real data example.

Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine. Their inference is often challenged by the fact that the training data comprises only the outcome for the administered treatment, and not for alternative treatments (the so-called counterfactual outcomes). Several methods were suggested for this scenario based on observational data, i.e.~data where the intervention was not applied randomly, for both continuous and binary outcome variables. However, patient outcome is often recorded in terms of time-to-event data, comprising right-censored event times if an event does not occur within the observation period. Albeit their enormous importance, time-to-event data is rarely used for treatment optimization. We suggest an approach named BITES (Balanced Individual Treatment Effect for Survival data), which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network; i.e.~we regularize differences between treated and non-treated patients using Integral Probability Metrics (IPM). We show in simulation studies that this approach outperforms the state of the art. Further, we demonstrate in an application to a cohort of breast cancer patients that hormone treatment can be optimized based on six routine parameters. We successfully validated this finding in an independent cohort. BITES is provided as an easy-to-use python implementation.

Behavioral science researchers have shown strong interest in disaggregating within-person relations from between-person differences (stable traits) using longitudinal data. In this paper, we propose a method of within-person variability score-based causal inference for estimating joint effects of time-varying continuous treatments by effectively controlling for stable traits. After explaining the assumed data-generating process and providing formal definitions of stable trait factors, within-person variability scores, and joint effects of time-varying treatments at the within-person level, we introduce the proposed method, which consists of a two-step analysis. Within-person variability scores for each person, which are disaggregated from stable traits of that person, are first calculated using weights based on a best linear correlation preserving predictor through structural equation modeling (SEM). Causal parameters are then estimated via a potential outcome approach, either marginal structural models (MSMs) or structural nested mean models (SNMMs), using calculated within-person variability scores. Unlike the approach that relies entirely on SEM, the present method does not assume linearity for observed time-varying confounders at the within-person level. We emphasize the use of SNMMs with G-estimation because of its property of being doubly robust to model misspecifications in how observed time-varying confounders are functionally related with treatments/predictors and outcomes at the within-person level. Through simulation, we show that the proposed method can recover causal parameters well and that causal estimates might be severely biased if one does not properly account for stable traits. An empirical application using data regarding sleep habits and mental health status from the Tokyo Teen Cohort study is also provided.

The global financial crisis of 2007-2009 highlighted the crucial role systemic risk plays in ensuring stability of financial markets. Accurate assessment of systemic risk would enable regulators to introduce suitable policies to mitigate the risk as well as allow individual institutions to monitor their vulnerability to market movements. One popular measure of systemic risk is the conditional value-at-risk (CoVaR), proposed in Adrian and Brunnermeier (2011). We develop a methodology to estimate CoVaR semi-parametrically within the framework of multivariate extreme value theory. According to its definition, CoVaR can be viewed as a high quantile of the conditional distribution of one institution's (or the financial system) potential loss, where the conditioning event corresponds to having large losses in the financial system (or the given financial institution). We relate this conditional distribution to the tail dependence function between the system and the institution, then use parametric modelling of the tail dependence function to address data sparsity in the joint tail regions. We prove consistency of the proposed estimator, and illustrate its performance via simulation studies and a real data example.

北京阿比特科技有限公司