Despite decades of efforts to resolve, memory safety violations are still persistent and problematic in modern systems. Various defense mechanisms have been proposed, but their deployment in real systems remains challenging because of performance, security, or compatibility concerns. In this paper, we propose RV-CURE, a RISC-V capability architecture that implements full-system support for full memory safety. For capability enforcement, we first propose a compiler technique, data-pointer tagging (DPT), applicable to protecting all memory types. It inserts a pointer tag in a pointer address and associates that tag with the pointer's capability metadata. DPT enforces a capability check for every memory access by a tagged pointer and thereby prevents illegitimate memory accesses. Furthermore, we investigate and present lightweight hardware extensions for DPT based on the open-source RISC-V BOOM processor. We observe that a capability-execution pipeline can be implemented in parallel with the existing memory-execution pipeline without intrusive modifications. With our seamless hardware integration, we achieve low-cost capability checks transparently performed in hardware. Altogether, we prototype RV-CURE as a synthesized RTL processor and conduct full-system evaluations on FPGAs running Linux OS. Our evaluations show that RV-CURE achieves strong memory safety at a 10.8% slowdown across the SPEC 2017 C/C++ workloads.
Data management on GPUs has become increasingly relevant due to a tremendous rise in processing power and available GPU memory. Similar to main-memory systems, there is a need for performant GPU-resident index structures to speed up query processing. Unfortunately, mapping indexes efficiently to the highly parallel and hard-to-program hardware is challenging and often fails to yield the desired performance and flexibility. Instead of proposing yet another hand-tailored index, we investigate whether we can exploit an indexing mechanism that is already built into modern GPUs: The raytracing hardware accelerator provided by NVIDIA RTX GPUs. To do so, we re-phrase the database indexing problem as a raytracing problem, where we express the dataset to be indexed as objects in a 3D scene, and point/range lookups as rays across the scene. In this combination, coined RX in the following, lookups are performed as intersection tests in hardware by dedicated raytracing cores. To analyze the pros, cons, and usefulness of the raytracing pipeline for database indexing, we carefully evaluate RX along fourteen dimensions and demonstrate its competitiveness and potential in a large variety of situations.
Legged locomotion is a complex control problem that requires both accuracy and robustness to cope with real-world challenges. Legged systems have traditionally been controlled using trajectory optimization with inverse dynamics. Such hierarchical model-based methods are appealing due to intuitive cost function tuning, accurate planning, and most importantly, the insightful understanding gained from more than one decade of extensive research. However, model mismatch and violation of assumptions are common sources of faulty operation and may hinder successful sim-to-real transfer. Simulation-based reinforcement learning, on the other hand, results in locomotion policies with unprecedented robustness and recovery skills. Yet, all learning algorithms struggle with sparse rewards emerging from environments where valid footholds are rare, such as gaps or stepping stones. In this work, we propose a hybrid control architecture that combines the advantages of both worlds to simultaneously achieve greater robustness, foot-placement accuracy, and terrain generalization. Our approach utilizes a model-based planner to roll out a reference motion during training. A deep neural network policy is trained in simulation, aiming to track the optimized footholds. We evaluate the accuracy of our locomotion pipeline on sparse terrains, where pure data-driven methods are prone to fail. Furthermore, we demonstrate superior robustness in the presence of slippery or deformable ground when compared to model-based counterparts. Finally, we show that our proposed tracking controller generalizes across different trajectory optimization methods not seen during training. In conclusion, our work unites the predictive capabilities and optimality guarantees of online planning with the inherent robustness attributed to offline learning.
Traffic sign detection is an important research direction in intelligent driving. Unfortunately, existing methods often overlook extreme conditions such as fog, rain, and motion blur. Moreover, the end-to-end training strategy for image denoising and object detection models fails to utilize inter-model information effectively. To address these issues, we propose CCSPNet, an efficient feature extraction module based on Transformers and CNNs, which effectively leverages contextual information, achieves faster inference speed and provides stronger feature enhancement capabilities. Furthermore, we establish the correlation between object detection and image denoising tasks and propose a joint training model, CCSPNet-Joint, to improve data efficiency and generalization. Finally, to validate our approach, we create the CCTSDB-AUG dataset for traffic sign detection in extreme scenarios. Extensive experiments have shown that CCSPNet achieves state-of-the-art performance in traffic sign detection under extreme conditions. Compared to end-to-end methods, CCSPNet-Joint achieves a 5.32% improvement in precision and an 18.09% improvement in [email protected].
Recent years have witnessed significant advancements in self-supervised learning (SSL) methods for speech-processing tasks. Various speech-based SSL models have been developed and present promising performance on a range of downstream tasks including speech recognition. However, existing speech-based SSL models face a common dilemma in terms of computational cost, which might hinder their potential application and in-depth academic research. To address this issue, we first analyze the computational cost of different modules during HuBERT pre-training and then introduce a stack of efficiency optimizations, which is named Fast-HuBERT in this paper. The proposed Fast-HuBERT can be trained in 1.1 days with 8 V100 GPUs on the Librispeech 960h benchmark, without performance degradation, resulting in a 5.2x speedup, compared to the original implementation. Moreover, we explore two well-studied techniques in the Fast-HuBERT and demonstrate consistent improvements as reported in previous work.
Machine Learning models are being utilized extensively to drive recommender systems, which is a widely explored topic today. This is especially true of the music industry, where we are witnessing a surge in growth. Besides a large chunk of active users, these systems are fueled by massive amounts of data. These large-scale systems yield applications that aim to provide a better user experience and to keep customers actively engaged. In this paper, a distributed Machine Learning (ML) pipeline is delineated, which is capable of taking a subset of songs as input and producing a new subset of songs identified as being similar to the inputted subset. The publicly accessible Million Songs Dataset (MSD) enables researchers to develop and explore reasonably efficient systems for audio track analysis and recommendations, without having to access a commercialized music platform. The objective of the proposed application is to leverage an ML system trained to optimally recommend songs that a user might like.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.
Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whole source image with recurrent convolutional neural network (RCNN). Then several stacked deconvolutional layers are adopted to get the multi-scale feature representation and obtain a series of saliency maps. Finally, we investigate a fusion convolution module (FCM) to build a final pixel level saliency map. The proposed model is extensively evaluated on four salient object detection benchmark datasets. Results show that our deep model significantly outperforms other 12 state-of-the-art approaches.