亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the number of maximal cliques, i.e., cliques that are not contained in any larger clique, in three network models: Erd\H{o}s-R\'enyi random graphs, inhomogeneous random graphs (also called Chung-Lu graphs), and geometric inhomogeneous random graphs. For sparse and not-too-dense Erd\H{o}s-R\'enyi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (geometric) inhomogeneous random graphs are sparse, we give super-polynomial lower bounds for these models. This comes form the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (geometric) inhomogeneous random graphs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size.

相關內容

Datacenter networks commonly facilitate the transmission of data in distributed computing frameworks through coflows, which are collections of parallel flows associated with a common task. Most of the existing research has concentrated on scheduling coflows to minimize the time required for their completion, i.e., to optimize the average dispatch rate of coflows in the network fabric. Nevertheless, modern applications often produce coflows that are specifically intended for online services and mission-crucial computational tasks, necessitating adherence to specific deadlines for their completion. In this paper, we introduce \wdcoflow,~ a new algorithm to maximize the weighted number of coflows that complete before their deadline. By combining a dynamic programming algorithm along with parallel inequalities, our heuristic solution performs at once coflow admission control and coflow prioritization, imposing a $\sigma$-order on the set of coflows. With extensive simulation, we demonstrate the effectiveness of our algorithm in improving up to $3\times$ more coflows that meet their deadline in comparison the best SoA solution, namely $\mathtt{CS\text{-}MHA}$. Furthermore, when weights are used to differentiate coflow classes, \wdcoflow~ is able to improve the admission per class up to $4\times$, while increasing the average weighted coflow admission rate.

We devise a version of Linear Temporal Logic (LTL) on a denotational domain of streams. We investigate this logic in terms of domain theory, (point-free) topology and geometric logic. This yields the first steps toward an extension of the "Domain Theory in Logical Form" paradigm to temporal liveness properties. We show that the negation-free formulae of LTL induce sober subspaces of streams, but that this is in general not the case in presence of negation. We propose a direct, inductive, translation of negation-free LTL to geometric logic. This translation reflects the approximations used to compute the usual fixpoint representations of LTL modalities. As a motivating example, we handle a natural input-output specification for the usual filter function on streams.

Modern neural language models (LMs) are powerful tools for modeling human sentence production and comprehension, and their internal representations are remarkably well-aligned with representations of language in the human brain. But to achieve these results, LMs must be trained in distinctly un-human-like ways -- requiring orders of magnitude more language data than children receive during development, and without any of the accompanying grounding in perception, action, or social behavior. Do models trained more naturalistically -- with grounded supervision -- exhibit more human-like language learning? We investigate this question in the context of word learning, a key sub-task in language acquisition. We train a diverse set of LM architectures, with and without auxiliary supervision from image captioning tasks, on datasets of varying scales. We then evaluate these models on a broad set of benchmarks characterizing models' learning of syntactic categories, lexical relations, semantic features, semantic similarity, and alignment with human neural representations. We find that visual supervision can indeed improve the efficiency of word learning. However, these improvements are limited: they are present almost exclusively in the low-data regime, and sometimes canceled out by the inclusion of rich distributional signals from text. The information conveyed by text and images is not redundant -- we find that models mainly driven by visual information yield qualitatively different from those mainly driven by word co-occurrences. However, our results suggest that current multi-modal modeling approaches fail to effectively leverage visual information to build more human-like word representations from human-sized datasets.

Coding schemes for several problems in network information theory are constructed starting from point-to-point channel codes that are designed for symmetric channels. Given that the point-to-point codes satisfy certain properties pertaining to the rate, the error probability, and the distribution of decoded sequences, bounds on the performance of the coding schemes are derived and shown to hold irrespective of other properties of the codes. In particular, we consider the problems of lossless and lossy source coding, Slepian-Wolf coding, Wyner-Ziv coding, Berger-Tung coding, multiple description coding, asymmetric channel coding, Gelfand-Pinsker coding, coding for multiple access channels, Marton coding for broadcast channels, and coding for cloud radio access networks (C-RAN's). We show that the coding schemes can achieve the best known inner bounds for these problems, provided that the constituent point-to-point channel codes are rate-optimal. This would allow one to leverage commercial off-the-shelf codes for point-to-point symmetric channels in the practical implementation of codes over networks. Simulation results demonstrate the gain of the proposed coding schemes compared to existing practical solutions to these problems.

The recently proposed generative flow networks (GFlowNets) are a method of training a policy to sample compositional discrete objects with probabilities proportional to a given reward via a sequence of actions. GFlowNets exploit the sequential nature of the problem, drawing parallels with reinforcement learning (RL). Our work extends the connection between RL and GFlowNets to a general case. We demonstrate how the task of learning a generative flow network can be efficiently redefined as an entropy-regularized RL problem with a specific reward and regularizer structure. Furthermore, we illustrate the practical efficiency of this reformulation by applying standard soft RL algorithms to GFlowNet training across several probabilistic modeling tasks. Contrary to previously reported results, we show that entropic RL approaches can be competitive against established GFlowNet training methods. This perspective opens a direct path for integrating reinforcement learning principles into the realm of generative flow networks.

In many real-world scenarios (e.g., academic networks, social platforms), different types of entities are not only associated with texts but also connected by various relationships, which can be abstracted as Text-Attributed Heterogeneous Graphs (TAHGs). Current pretraining tasks for Language Models (LMs) primarily focus on separately learning the textual information of each entity and overlook the crucial aspect of capturing topological connections among entities in TAHGs. In this paper, we present a new pretraining framework for LMs that explicitly considers the topological and heterogeneous information in TAHGs. Firstly, we define a context graph as neighborhoods of a target node within specific orders and propose a topology-aware pretraining task to predict nodes involved in the context graph by jointly optimizing an LM and an auxiliary heterogeneous graph neural network. Secondly, based on the observation that some nodes are text-rich while others have little text, we devise a text augmentation strategy to enrich textless nodes with their neighbors' texts for handling the imbalance issue. We conduct link prediction and node classification tasks on three datasets from various domains. Experimental results demonstrate the superiority of our approach over existing methods and the rationality of each design. Our code is available at //github.com/Hope-Rita/THLM.

Deep neural networks (DNNs) have succeeded in many different perception tasks, e.g., computer vision, natural language processing, reinforcement learning, etc. The high-performed DNNs heavily rely on intensive resource consumption. For example, training a DNN requires high dynamic memory, a large-scale dataset, and a large number of computations (a long training time); even inference with a DNN also demands a large amount of static storage, computations (a long inference time), and energy. Therefore, state-of-the-art DNNs are often deployed on a cloud server with a large number of super-computers, a high-bandwidth communication bus, a shared storage infrastructure, and a high power supplement. Recently, some new emerging intelligent applications, e.g., AR/VR, mobile assistants, Internet of Things, require us to deploy DNNs on resource-constrained edge devices. Compare to a cloud server, edge devices often have a rather small amount of resources. To deploy DNNs on edge devices, we need to reduce the size of DNNs, i.e., we target a better trade-off between resource consumption and model accuracy. In this dissertation, we studied four edge intelligence scenarios, i.e., Inference on Edge Devices, Adaptation on Edge Devices, Learning on Edge Devices, and Edge-Server Systems, and developed different methodologies to enable deep learning in each scenario. Since current DNNs are often over-parameterized, our goal is to find and reduce the redundancy of the DNNs in each scenario.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

北京阿比特科技有限公司