This note generalizes factorization for formulas with multiplicities and conjectures that the connection method along with this feature is computationally as powerful as resolution, also seen from a complexity point of view.
We propose a novel sensitivity analysis framework for linear estimators with identification failures that can be viewed as seeing the wrong outcome distribution. Our approach measures the degree of identification failure through the change in measure between the observed distribution and a hypothetical target distribution that would identify the causal parameter of interest. The framework yields a sensitivity analysis that generalizes existing bounds for Average Potential Outcome (APO), Regression Discontinuity (RD), and instrumental variables (IV) exclusion failure designs. Our partial identification results extend results from the APO context to allow even unbounded likelihood ratios. Our proposed sensitivity analysis consistently estimates sharp bounds under plausible conditions and estimates valid bounds under mild conditions. We find that our method performs well in simulations even when targeting a discontinuous and nearly infinite bound.
State space models (SSMs) with selection mechanisms and hardware-aware architectures, namely Mamba, have recently demonstrated significant promise in long-sequence modeling. Since the self-attention mechanism in transformers has quadratic complexity with image size and increasing computational demands, the researchers are now exploring how to adapt Mamba for computer vision tasks. This paper is the first comprehensive survey aiming to provide an in-depth analysis of Mamba models in the field of computer vision. It begins by exploring the foundational concepts contributing to Mamba's success, including the state space model framework, selection mechanisms, and hardware-aware design. Next, we review these vision mamba models by categorizing them into foundational ones and enhancing them with techniques such as convolution, recurrence, and attention to improve their sophistication. We further delve into the widespread applications of Mamba in vision tasks, which include their use as a backbone in various levels of vision processing. This encompasses general visual tasks, Medical visual tasks (e.g., 2D / 3D segmentation, classification, and image registration, etc.), and Remote Sensing visual tasks. We specially introduce general visual tasks from two levels: High/Mid-level vision (e.g., Object detection, Segmentation, Video classification, etc.) and Low-level vision (e.g., Image super-resolution, Image restoration, Visual generation, etc.). We hope this endeavor will spark additional interest within the community to address current challenges and further apply Mamba models in computer vision.
We introduce and investigate a powerful hyper logical framework in the linear-time setting, we call generalized HyperLTL with stuttering and contexts (GHyperLTL_SC for short). GHyperLTL_SC unifies known asynchronous extensions of HyperLTL and the well-known extension KLTL of LTL with knowledge modalities under both the synchronous and asynchronous perfect recall semantics. As a main contribution, we individuate a meaningful fragment of GHyperLTL_SC, we call simple GHyperLTL_SC, with a decidable model-checking problem, which is more expressive than HyperLTL and known fragments of asynchronous extensions of HyperLTL with a decidable model-checking problem. Simple GHyperLTL_SC subsumes KLTL under the synchronous semantics and the one-agent fragment of KLTL under the asynchronous semantics, and to the best of our knowledge, it represents the unique hyper logic with a decidable model-checking problem which can express powerful non-regular trace properties when interpreted on singleton sets of traces. We justify the relevance of simple GHyperLTL_SC by showing that it can express diagnosability properties, interesting classes of information-flow security policies, both in the synchronous and asynchronous settings, and bounded termination (more in general, global promptness in the style of Prompt LTL).
In this paper, we show how mixed-integer conic optimization can be used to combine feature subset selection with holistic generalized linear models to fully automate the model selection process. Concretely, we directly optimize for the Akaike and Bayesian information criteria while imposing constraints designed to deal with multicollinearity in the feature selection task. Specifically, we propose a novel pairwise correlation constraint that combines the sign coherence constraint with ideas from classical statistical models like Ridge regression and the OSCAR model.
We consider the problem of maintaining a collection of strings while efficiently supporting splits and concatenations on them, as well as comparing two substrings, and computing the longest common prefix between two suffixes. This problem can be solved in optimal time $\mathcal{O}(\log N)$ whp for the updates and $\mathcal{O}(1)$ worst-case time for the queries, where $N$ is the total collection size [Gawrychowski et al., SODA 2018]. We present here a much simpler solution based on a forest of enhanced splay trees (FeST), where both the updates and the substring comparison take $\mathcal{O}(\log n)$ amortized time, $n$ being the lengths of the strings involved. The longest common prefix of length $\ell$ is computed in $\mathcal{O}(\log n + \log^2\ell)$ amortized time. Our query results are correct whp. Our simpler solution enables other more general updates in $\mathcal{O}(\log n)$ amortized time, such as reversing a substring and/or mapping its symbols. We can also regard substrings as circular or as their omega extension.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax