亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the Dirichlet-Neumann (DN) and Neumann-Neumann (NN) methods applied to the optimal control problems arising from elliptic partial differential equations (PDEs) under the $H^{-1}$ regularization. We use the Lagrange multiplier approach to derive a forward-backward optimality system with the $L^2$ regularization, and a singular perturbed Poisson equation with the $H^{-1}$ regularization. The $H^{-1}$ regularization thus avoids solving a coupled bi-Laplacian problem, yet the solutions are less regular. The singular perturbed Poisson equation is then solved by using the DN and NN methods, and a detailed analysis is given both in the one-dimensional and two-dimensional case. Finally, we provide some numerical experiments with conclusions.

相關內容

在數學,統計學和計算機科學中,尤其是在機器學習和逆問題中,正則化是添加信息以解決不適定問題或防止過度擬合的過程。 正則化適用于不適定的優化問題中的目標函數。

In the domain of Federated Learning (FL) systems, recent cutting-edge methods heavily rely on ideal conditions convergence analysis. Specifically, these approaches assume that the training datasets on IoT devices possess similar attributes to the global data distribution. However, this approach fails to capture the full spectrum of data characteristics in real-time sensing FL systems. In order to overcome this limitation, we suggest a new approach system specifically designed for IoT networks with real-time sensing capabilities. Our approach takes into account the generalization gap due to the user's data sampling process. By effectively controlling this sampling process, we can mitigate the overfitting issue and improve overall accuracy. In particular, We first formulate an optimization problem that harnesses the sampling process to concurrently reduce overfitting while maximizing accuracy. In pursuit of this objective, our surrogate optimization problem is adept at handling energy efficiency while optimizing the accuracy with high generalization. To solve the optimization problem with high complexity, we introduce an online reinforcement learning algorithm, named Sample-driven Control for Federated Learning (SCFL) built on the Soft Actor-Critic (A2C) framework. This enables the agent to dynamically adapt and find the global optima even in changing environments. By leveraging the capabilities of SCFL, our system offers a promising solution for resource allocation in FL systems with real-time sensing capabilities.

We propose a unified dynamic tracking algorithmic framework (PLAY-CS) to reconstruct signal sequences with their intrinsic structured dynamic sparsity. By capitalizing on specific statistical assumptions concerning the dynamic filter of the signal sequences, the proposed framework exhibits versatility by encompassing various existing dynamic compressive sensing (DCS) algorithms. This is achieved through the incorporation of a newly proposed Partial-Laplacian filtering sparsity model, tailored to capture a more sophisticated dynamic sparsity. In practical scenarios such as dynamic channel tracking in wireless communications, the framework demonstrates enhanced performance compared to existing DCS algorithms.

Recent advancements have enabled human-robot collaboration through physical assistance and verbal guidance. However, limitations persist in coordinating robots' physical motions and speech in response to real-time changes in human behavior during collaborative contact tasks. We first derive principles from analyzing physical therapists' movements and speech during patient exercises. These principles are translated into control objectives to: 1) guide users through trajectories, 2) control motion and speech pace to align completion times with varying user cooperation, and 3) dynamically paraphrase speech along the trajectory. We then propose a Language Controller that synchronizes motion and speech, modulating both based on user cooperation. Experiments with 12 users show the Language Controller successfully aligns motion and speech compared to baselines. This provides a framework for fluent human-robot collaboration.

Surrogate-assisted evolutionary algorithms have been widely developed to solve complex and computationally expensive multi-objective optimization problems in recent years. However, when dealing with high-dimensional optimization problems, the performance of these surrogate-assisted multi-objective evolutionary algorithms deteriorate drastically. In this work, a novel Classifier-assisted rank-based learning and Local Model based multi-objective Evolutionary Algorithm (CLMEA) is proposed for high-dimensional expensive multi-objective optimization problems. The proposed algorithm consists of three parts: classifier-assisted rank-based learning, hypervolume-based non-dominated search, and local search in the relatively sparse objective space. Specifically, a probabilistic neural network is built as classifier to divide the offspring into a number of ranks. The offspring in different ranks uses rank-based learning strategy to generate more promising and informative candidates for real function evaluations. Then, radial basis function networks are built as surrogates to approximate the objective functions. After searching non-dominated solutions assisted by the surrogate model, the candidates with higher hypervolume improvement are selected for real evaluations. Subsequently, in order to maintain the diversity of solutions, the most uncertain sample point from the non-dominated solutions measured by the crowding distance is selected as the guided parent to further infill in the uncertain region of the front. The experimental results of benchmark problems and a real-world application on geothermal reservoir heat extraction optimization demonstrate that the proposed algorithm shows superior performance compared with the state-of-the-art surrogate-assisted multi-objective evolutionary algorithms. The source code for this work is available at //github.com/JellyChen7/CLMEA.

Executing time-sensitive multi-robot missions involves two distinct problems: Multi-Robot Task Assignment (MRTA) and Multi-Agent Path Finding (MAPF). Computing safe paths that complete every task and minimize the time to mission completion, or makespan, is a significant computational challenge even for small teams. In many missions, tasks can be generated during execution which is typically handled by either recomputing task assignments and paths from scratch, or by modifying existing plans using approximate approaches. While performing task reassignment and path finding from scratch produces theoretically optimal results, the computational load makes it too expensive for online implementation. In this work, we present Time-Sensitive Online Task Assignment and Navigation (TSOTAN), a framework which can quickly incorporate online generated tasks while guaranteeing bounded suboptimal task assignment makespans. It does this by assessing the quality of partial task reassignments and only performing a complete reoptimization when the makespan exceeds a user specified suboptimality bound. Through experiments in 2D environments we demonstrate TSOTAN's ability to produce quality solutions with computation times suitable for online implementation.

Quality of Service (QoS) prediction is an essential task in recommendation systems, where accurately predicting unknown QoS values can improve user satisfaction. However, existing QoS prediction techniques may perform poorly in the presence of noise data, such as fake location information or virtual gateways. In this paper, we propose the Probabilistic Deep Supervision Network (PDS-Net), a novel framework for QoS prediction that addresses this issue. PDS-Net utilizes a Gaussian-based probabilistic space to supervise intermediate layers and learns probability spaces for both known features and true labels. Moreover, PDS-Net employs a condition-based multitasking loss function to identify objects with noise data and applies supervision directly to deep features sampled from the probability space by optimizing the Kullback-Leibler distance between the probability space of these objects and the real-label probability space. Thus, PDS-Net effectively reduces errors resulting from the propagation of corrupted data, leading to more accurate QoS predictions. Experimental evaluations on two real-world QoS datasets demonstrate that the proposed PDS-Net outperforms state-of-the-art baselines, validating the effectiveness of our approach.

We propose a method to improve the efficiency and accuracy of amortized Bayesian inference (ABI) by leveraging universal symmetries in the probabilistic joint model $p(\theta, y)$ of parameters $\theta$ and data $y$. In a nutshell, we invert Bayes' theorem and estimate the marginal likelihood based on approximate representations of the joint model. Upon perfect approximation, the marginal likelihood is constant across all parameter values by definition. However, approximation error leads to undesirable variance in the marginal likelihood estimates across different parameter values. We formulate violations of this symmetry as a loss function to accelerate the learning dynamics of conditional neural density estimators. We apply our method to a bimodal toy problem with an explicit likelihood (likelihood-based) and a realistic model with an implicit likelihood (simulation-based).

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司