亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work studies the wideband modeling and beamforming design of beyond diagonal reconfigurable intelligent surface (BD-RIS), which generalizes and goes beyond conventional RIS with diagonal phase shift matrices to achieve enhanced channel gain. Specifically, we investigate the response of BD-RIS in wideband systems by going back to its hardware circuit realizations. We propose a novel wideband model which has simple expressions while capturing the response variations of BD-RIS for signals with different frequencies. With this wideband model, we propose a BD-RIS design algorithm for an orthogonal frequency division multiplexing system to maximize the average rate over all subcarriers. Finally, we provide simulation results to evaluate the performance of the proposed design and show the importance of wideband modeling for BD-RIS.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 穩健性 · NLP · 評論員 · 語言模型化 ·
2024 年 5 月 2 日

As the deployment of NLP systems in critical applications grows, ensuring the robustness of large language models (LLMs) against adversarial attacks becomes increasingly important. Large language models excel in various NLP tasks but remain vulnerable to low-cost adversarial attacks. Focusing on the domain of conversation entailment, where multi-turn dialogues serve as premises to verify hypotheses, we fine-tune a transformer model to accurately discern the truthfulness of these hypotheses. Adversaries manipulate hypotheses through synonym swapping, aiming to deceive the model into making incorrect predictions. To counteract these attacks, we implemented innovative fine-tuning techniques and introduced an embedding perturbation loss method to significantly bolster the model's robustness. Our findings not only emphasize the importance of defending against adversarial attacks in NLP but also highlight the real-world implications, suggesting that enhancing model robustness is critical for reliable NLP applications.

This work presents Unbundle-Rewrite-Rebundle (URR), a system for detecting privacy-harming portions of bundled JavaScript code, and rewriting that code at runtime to remove the privacy harming behavior without breaking the surrounding code or overall application. URR is a novel solution to the problem of JavaScript bundles, where websites pre-compile multiple code units into a single file, making it impossible for content filters and ad-blockers to differentiate between desired and unwanted resources. Where traditional content filtering tools rely on URLs, URR analyzes the code at the AST level, and replaces harmful AST sub-trees with privacy-and-functionality maintaining alternatives. We present an open-sourced implementation of URR as a Firefox extension, and evaluate it against JavaScript bundles generated by the most popular bundling system (Webpack) deployed on the Tranco 10k. We measure the performance, measured by precision (1.00), recall (0.95), and speed (0.43s per-script) when detecting and rewriting three representative privacy harming libraries often included in JavaScript bundles, and find URR to be an effective approach to a large-and-growing blind spot unaddressed by current privacy tools.

As modern systems become ever more connected with complex dynamic coupling relationships, the development of safe control methods for such networked systems becomes paramount. In this paper, we define a general networked model with coupled dynamics and local control and discuss the relationship of node-level safety definitions for individual agents with local neighborhood dynamics. We define a node-level barrier function (NBF), node-level control barrier function (NCBF), and collaborative node-level barrier function (cNCBF) and provide conditions under which sets defined by these functions will be forward invariant. We use collaborative node-level barrier functions to construct a novel distributed algorithm for the safe control of collaborating network agents and provide conditions under which the algorithm is guaranteed to converge to a viable set of safe control actions for all agents or a terminally infeasible state for at least one agent. We introduce the notion of non-compliance of network neighbors as a metric of robustness for collaborative safety for a given network state and chosen barrier function hyper-parameters. We illustrate these results on a networked susceptible-infected-susceptible (SIS) model.

This paper introduces a new class of explanation structures, called robust counterfactual witnesses (RCWs), to provide robust, both counterfactual and factual explanations for graph neural networks. Given a graph neural network M, a robust counterfactual witness refers to the fraction of a graph G that are counterfactual and factual explanation of the results of M over G, but also remains so for any "disturbed" G by flipping up to k of its node pairs. We establish the hardness results, from tractable results to co-NP-hardness, for verifying and generating robust counterfactual witnesses. We study such structures for GNN-based node classification, and present efficient algorithms to verify and generate RCWs. We also provide a parallel algorithm to verify and generate RCWs for large graphs with scalability guarantees. We experimentally verify our explanation generation process for benchmark datasets, and showcase their applications.

The design of communication systems dedicated to machine learning tasks is one key aspect of goal-oriented communications. In this framework, this article investigates the interplay between data reconstruction and learning from the same compressed observations, particularly focusing on the regression problem. We establish achievable rate-generalization error regions for both parametric and non-parametric regression, where the generalization error measures the regression performance on previously unseen data. The analysis covers both asymptotic and finite block-length regimes, providing fundamental results and practical insights for the design of coding schemes dedicated to regression. The asymptotic analysis relies on conventional Wyner-Ziv coding schemes which we extend to study the convergence of the generalization error. The finite-length analysis uses the notions of information density and dispersion with additional term for the generalization error. We further investigate the trade-off between reconstruction and regression in both asymptotic and non-asymptotic regimes. Contrary to the existing literature which focused on other learning tasks, our results state that in the case of regression, there is no trade-off between data reconstruction and regression in the asymptotic regime. We also observe the same absence of trade-off for the considered achievable scheme in the finite-length regime, by analyzing correlation between distortion and generalization error.

Many real-world sequential manipulation tasks involve a combination of discrete symbolic search and continuous motion planning, collectively known as combined task and motion planning (TAMP). However, prevailing methods often struggle with the computational burden and intricate combinatorial challenges, limiting their applications for online replanning in the real world. To address this, we propose Dynamic Logic-Geometric Program (D-LGP), a novel approach integrating Dynamic Tree Search and global optimization for efficient hybrid planning. Through empirical evaluation on three benchmarks, we demonstrate the efficacy of our approach, showcasing superior performance in comparison to state-of-the-art techniques. We validate our approach through simulation and demonstrate its reactive capability to cope with online uncertainty and external disturbances in the real world. Project webpage: //sites.google.com/view/dyn-lgp.

We investigate polynomial-time approximation schemes for the classic 0-1 knapsack problem. The previous algorithm by Deng, Jin, and Mao (SODA'23) has approximation factor $1 + \eps$ with running time $\widetilde{O}(n + \frac{1}{\eps^{2.2}})$. There is a lower Bound of $(n + \frac{1}{\eps})^{2-o(1)}$ conditioned on the hypothesis that $(\min, +)$ has no truly subquadratic algorithm. We close the gap by proposing an approximation scheme that runs in $\widetilde{O}(n + \frac{1}{\eps^2})$ time.

Objectives: This study aims to provide a comprehensive overview of the role of quadratic polynomials in data modeling and analysis, particularly in representing the curvature of natural phenomena. Methods: We begin with a fundamental explanation of quadratic polynomials and describe their general forms and theoretical significance. We then explored the application of these polynomials in regression analysis, detailing the process of fitting quadratic models to the data using Python libraries NumPy and Matplotlib. The methodology also included calculation of the coefficient of determination (R-squared) to evaluate the polynomial model fit. Results: Using practical examples accompanied by Python scripts, this study demonstrated the application of quadratic polynomials to analyze data patterns. These examples illustrate the utility of quadratic models in applied analytics. Conclusions: This study bridges the gap between theoretical mathematical concepts and practical data analysis, thereby enhancing the understanding and interpretation of the data patterns. Furthermore, its implementation in Python, released under MIT license, offers an accessible tool for public use.

This work initiates the study of a beyond-diagonal reconfigurable intelligent surface (BD-RIS)-aided transmitter architecture for integrated sensing and communication (ISAC) in the millimeter-wave (mmWave) frequency band. Deploying BD-RIS at the transmitter side not only alleviates the need for extensive fully digital radio frequency (RF) chains but also enhances both communication and sensing performance. These benefits are facilitated by the additional design flexibility introduced by the fully-connected scattering matrix of BD-RIS. To achieve the aforementioned benefits, in this work, we propose an efficient two-stage algorithm to design the digital beamforming of the transmitter and the scattering matrix of the BD-RIS with the aim of jointly maximizing the sum rate for multiple communication users and minimizing the largest eigenvalue of the Cramer-Rao bound (CRB) matrix for multiple sensing targets. Numerical results show that the transmitter-side BD-RIS-aided mmWave ISAC outperforms the conventional diagonal-RIS-aided ones in both communication and sensing performance.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

北京阿比特科技有限公司