亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid expansion of AI-generated content (AIGC) reflects the iteration from assistive AI towards generative AI (GAI) with creativity. Meanwhile, the 6G networks will also evolve from the Internet-of-everything to the Internet-of-intelligence with hybrid heterogeneous network architectures. In the future, the interplay between GAI and the 6G will lead to new opportunities, where GAI can learn the knowledge of personalized data from the massive connected 6G end devices, while GAI's powerful generation ability can provide advanced network solutions for 6G network and provide 6G end devices with various AIGC services. However, they seem to be an odd couple, due to the contradiction of data and resources. To achieve a better-coordinated interplay between GAI and 6G, the GAI-native networks (GainNet), a GAI-oriented collaborative cloud-edge-end intelligence framework, is proposed in this paper. By deeply integrating GAI with 6G network design, GainNet realizes the positive closed-loop knowledge flow and sustainable-evolution GAI model optimization. On this basis, the GAI-oriented generic resource orchestration mechanism with integrated sensing, communication, and computing (GaiRom-ISCC) is proposed to guarantee the efficient operation of GainNet. Two simple case studies demonstrate the effectiveness and robustness of the proposed schemes. Finally, we envision the key challenges and future directions concerning the interplay between GAI models and 6G networks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

As the power of Artificial Intelligence (AI) continues to advance, there is increased interest in how best to combine AI-based agents with humans to achieve mission effectiveness. Three perspectives have emerged. The first stems from more conventional human factors traditions and views these entities as highly capable tools that humans can use to accomplish increasingly sophisticated tasks. The second "camp" believes that as the sophistication of these entities increases, it becomes increasingly appropriate to talk about them as "teammates" and use the research on human teams as a foundation for further exploration. The third perspective is emerging and finds both the "tools" and "teammate" metaphors flawed and limiting. This perspective emphasizes "joint activity," "joint cognitive activity," or something similar. In this article, we briefly review these three perspectives.

The recent advancements in Generative Adversarial Networks (GANs) and the emergence of Diffusion models have significantly streamlined the production of highly realistic and widely accessible synthetic content. As a result, there is a pressing need for effective general purpose detection mechanisms to mitigate the potential risks posed by deepfakes. In this paper, we explore the effectiveness of pre-trained vision-language models (VLMs) when paired with recent adaptation methods for universal deepfake detection. Following previous studies in this domain, we employ only a single dataset (ProGAN) in order to adapt CLIP for deepfake detection. However, in contrast to prior research, which rely solely on the visual part of CLIP while ignoring its textual component, our analysis reveals that retaining the text part is crucial. Consequently, the simple and lightweight Prompt Tuning based adaptation strategy that we employ outperforms the previous SOTA approach by 5.01% mAP and 6.61% accuracy while utilizing less than one third of the training data (200k images as compared to 720k). To assess the real-world applicability of our proposed models, we conduct a comprehensive evaluation across various scenarios. This involves rigorous testing on images sourced from 21 distinct datasets, including those generated by GANs-based, Diffusion-based and Commercial tools.

Data Pipeline plays an indispensable role in tasks such as modeling machine learning and developing data products. With the increasing diversification and complexity of Data sources, as well as the rapid growth of data volumes, building an efficient Data Pipeline has become crucial for improving work efficiency and solving complex problems. This paper focuses on exploring how to optimize data flow through automated machine learning methods by integrating AutoML with Data Pipeline. We will discuss how to leverage AutoML technology to enhance the intelligence of Data Pipeline, thereby achieving better results in machine learning tasks. By delving into the automation and optimization of Data flows, we uncover key strategies for constructing efficient data pipelines that can adapt to the ever-changing data landscape. This not only accelerates the modeling process but also provides innovative solutions to complex problems, enabling more significant outcomes in increasingly intricate data domains. Keywords- Data Pipeline Training;AutoML; Data environment; Machine learning

The subjective perception of emotion leads to inconsistent labels from human annotators. Typically, utterances lacking majority-agreed labels are excluded when training an emotion classifier, which cause problems when encountering ambiguous emotional expressions during testing. This paper investigates three methods to handle ambiguous emotion. First, we show that incorporating utterances without majority-agreed labels as an additional class in the classifier reduces the classification performance of the other emotion classes. Then, we propose detecting utterances with ambiguous emotions as out-of-domain samples by quantifying the uncertainty in emotion classification using evidential deep learning. This approach retains the classification accuracy while effectively detects ambiguous emotion expressions. Furthermore, to obtain fine-grained distinctions among ambiguous emotions, we propose representing emotion as a distribution instead of a single class label. The task is thus re-framed from classification to distribution estimation where every individual annotation is taken into account, not just the majority opinion. The evidential uncertainty measure is extended to quantify the uncertainty in emotion distribution estimation. Experimental results on the IEMOCAP and CREMA-D datasets demonstrate the superior capability of the proposed method in terms of majority class prediction, emotion distribution estimation, and uncertainty estimation.

We investigate the integration of Large Language Models (LLMs) into query encoders to improve dense retrieval without increasing latency and cost, by circumventing the dependency on LLMs at inference time. SoftQE incorporates knowledge from LLMs by mapping embeddings of input queries to those of the LLM-expanded queries. While improvements over various strong baselines on in-domain MS-MARCO metrics are marginal, SoftQE improves performance by 2.83 absolute percentage points on average on five out-of-domain BEIR tasks.

Recent advances in Large Language Models (LLMs) have highlighted the need for robust, comprehensive, and challenging benchmarks. Yet, research on evaluating their Emotional Intelligence (EI) is considerably limited. Existing benchmarks have two major shortcomings: first, they mainly focus on emotion recognition, neglecting essential EI capabilities such as emotion regulation and thought facilitation through emotion understanding; second, they are primarily constructed from existing datasets, which include frequent patterns, explicit information, and annotation errors, leading to unreliable evaluation. We propose EmoBench, a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine EI, including Emotional Understanding and Emotional Application. EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding. Our findings reveal a considerable gap between the EI of existing LLMs and the average human, highlighting a promising direction for future research. Our code and data will be publicly available from //github.com/Sahandfer/EmoBench.

Monocular depth estimation from RGB images plays a pivotal role in 3D vision. However, its accuracy can deteriorate in challenging environments such as nighttime or adverse weather conditions. While long-wave infrared cameras offer stable imaging in such challenging conditions, they are inherently low-resolution, lacking rich texture and semantics as delivered by the RGB image. Current methods focus solely on a single modality due to the difficulties to identify and integrate faithful depth cues from both sources. To address these issues, this paper presents a novel approach that identifies and integrates dominant cross-modality depth features with a learning-based framework. Concretely, we independently compute the coarse depth maps with separate networks by fully utilizing the individual depth cues from each modality. As the advantageous depth spreads across both modalities, we propose a novel confidence loss steering a confidence predictor network to yield a confidence map specifying latent potential depth areas. With the resulting confidence map, we propose a multi-modal fusion network that fuses the final depth in an end-to-end manner. Harnessing the proposed pipeline, our method demonstrates the ability of robust depth estimation in a variety of difficult scenarios. Experimental results on the challenging MS$^2$ and ViViD++ datasets demonstrate the effectiveness and robustness of our method.

In the rapidly evolving landscape of AI-mediated communication (AIMC), tools powered by Large Language Models (LLMs) are becoming integral to interpersonal communication. Employing a mixed-methods approach, we conducted a one-week diary and interview study to explore users' perceptions of these tools' ability to: 1) support interpersonal communication in the short-term, and 2) lead to potential long-term effects. Our findings indicate that participants view AIMC support favorably, citing benefits such as increased communication confidence, and finding precise language to express their thoughts, navigating linguistic and cultural barriers. However, the study also uncovers current limitations of AIMC tools, including verbosity, unnatural responses, and excessive emotional intensity. These shortcomings are further exacerbated by user concerns about inauthenticity and potential overreliance on the technology. Furthermore, we identified four key communication spaces delineated by communication stakes (high or low) and relationship dynamics (formal or informal) that differentially predict users' attitudes toward AIMC tools. Specifically, participants found the tool is more suitable for communicating in formal relationships than informal ones and more beneficial in high-stakes than low-stakes communication.

This report describes the state of the art in verifiable computation. The problem being solved is the following: The Verifiable Computation Problem (Verifiable Computing Problem) Suppose we have two computing agents. The first agent is the verifier, and the second agent is the prover. The verifier wants the prover to perform a computation. The verifier sends a description of the computation to the prover. Once the prover has completed the task, the prover returns the output to the verifier. The output will contain proof. The verifier can use this proof to check if the prover computed the output correctly. The check is not required to verify the algorithm used in the computation. Instead, it is a check that the prover computed the output using the computation specified by the verifier. The effort required for the check should be much less than that required to perform the computation. This state-of-the-art report surveys 128 papers from the literature comprising more than 4,000 pages. Other papers and books were surveyed but were omitted. The papers surveyed were overwhelmingly mathematical. We have summarised the major concepts that form the foundations for verifiable computation. The report contains two main sections. The first, larger section covers the theoretical foundations for probabilistically checkable and zero-knowledge proofs. The second section contains a description of the current practice in verifiable computation. Two further reports will cover (i) military applications of verifiable computation and (ii) a collection of technical demonstrators. The first of these is intended to be read by those who want to know what applications are enabled by the current state of the art in verifiable computation. The second is for those who want to see practical tools and conduct experiments themselves.

Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied action with infinite agent. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.

北京阿比特科技有限公司