Neural-networks-driven intelligent data-plane (NN-driven IDP) is becoming an emerging topic for excellent accuracy and high performance. Meanwhile we argue that NN-driven IDP should satisfy three design goals: the flexibility to support various NNs models, the low-latency-high-throughput inference performance, and the data-plane-unawareness harming no performance and functionality. Unfortunately, existing work either over-modify NNs for IDP, or insert inline pipelined accelerators into the data-plane, failing to meet the flexibility and unawareness goals. In this paper, we propose Kaleidoscope, a flexible and high-performance co-processor located at the bypass of the data-plane. To address the challenge of meeting three design goals, three key techniques are presented. The programmable run-to-completion accelerators are developed for flexible inference. To further improve performance, we design a scalable inference engine which completes low-latency and low-cost inference for the mouse flows, and perform complex NNs with high-accuracy for the elephant flows. Finally, raw-bytes-based NNs are introduced, which help to achieve unawareness. We prototype Kaleidoscope on both FPGA and ASIC library. In evaluation on six NNs models, Kaleidoscope reaches 256-352 ns inference latency and 100 Gbps throughput with negligible influence on the data-plane. The on-board tested NNs perform state-of-the-art accuracy among other NN-driven IDP, exhibiting the the significant impact of flexibility on enhancing traffic analysis accuracy.
Sequential (online) change-point detection involves continuously monitoring time-series data and triggering an alarm when shifts in the data distribution are detected. We propose an algorithm for real-time identification of alterations in the transition matrices of high-dimensional vector autoregressive models. The algorithm estimates transition matrices and error term variances using regularization techniques applied to training data, then computes a specific test statistic to detect changes in transition matrices as new data batches arrive. We establish the asymptotic normality of the test statistic under the scenario of no change points, subject to mild conditions. An alarm is raised when the calculated test statistic exceeds a predefined quantile of the standard normal distribution. We demonstrate that, as the size of the change (jump size) increases, the test power approaches one. The effectiveness of the algorithm is validated empirically across various simulation scenarios. Finally, we present two applications of the proposed methodology: analyzing shocks in S&P 500 data and detecting the timing of seizures in EEG data.
Despite multimodal sentiment analysis being a fertile research ground that merits further investigation, current approaches take up high annotation cost and suffer from label ambiguity, non-amicable to high-quality labeled data acquisition. Furthermore, choosing the right interactions is essential because the significance of intra- or inter-modal interactions can differ among various samples. To this end, we propose Semi-IIN, a Semi-supervised Intra-inter modal Interaction learning Network for multimodal sentiment analysis. Semi-IIN integrates masked attention and gating mechanisms, enabling effective dynamic selection after independently capturing intra- and inter-modal interactive information. Combined with the self-training approach, Semi-IIN fully utilizes the knowledge learned from unlabeled data. Experimental results on two public datasets, MOSI and MOSEI, demonstrate the effectiveness of Semi-IIN, establishing a new state-of-the-art on several metrics. Code is available at //github.com/flow-ljh/Semi-IIN.
Neural-network-based dynamics models learned from observational data have shown strong predictive capabilities for scene dynamics in robotic manipulation tasks. However, their inherent non-linearity presents significant challenges for effective planning. Current planning methods, often dependent on extensive sampling or local gradient descent, struggle with long-horizon motion planning tasks involving complex contact events. In this paper, we present a GPU-accelerated branch-and-bound (BaB) framework for motion planning in manipulation tasks that require trajectory optimization over neural dynamics models. Our approach employs a specialized branching heuristics to divide the search space into subdomains, and applies a modified bound propagation method, inspired by the state-of-the-art neural network verifier alpha-beta-CROWN, to efficiently estimate objective bounds within these subdomains. The branching process guides planning effectively, while the bounding process strategically reduces the search space. Our framework achieves superior planning performance, generating high-quality state-action trajectories and surpassing existing methods in challenging, contact-rich manipulation tasks such as non-prehensile planar pushing with obstacles, object sorting, and rope routing in both simulated and real-world settings. Furthermore, our framework supports various neural network architectures, ranging from simple multilayer perceptrons to advanced graph neural dynamics models, and scales efficiently with different model sizes.
Latency is becoming a key factor of performance for Internet applications and has triggered a number of changes in its protocols. Our work revisits the impact on latency of address family selection in dual-stack hosts. Through RIPE Atlas measurements, we analyse the address families latency difference and establish two requirements based on our findings for a latency-focused selection mechanism. First, the address family should be chosen per destination. Second, the choice should be able to evolve over time dynamically. We propose and implement a solution formulated as an online learning problem balancing exploration and exploitation. We validate our solution in simulations based on RIPE Atlas measurements, implement and evaluate our prototype in four access networks using Chrome and popular web services. We demonstrate the ability of our solution to converge towards the lowest-latency address family and improve the latency of transport connections used by applications.
AI for social impact (AI4SI) offers significant potential for addressing complex societal challenges in areas such as public health, agriculture, education, conservation, and public safety. However, existing AI4SI research is often labor-intensive and resource-demanding, limiting its accessibility and scalability; the standard approach is to design a (base-level) system tailored to a specific AI4SI problem. We propose the development of a novel meta-level multi-agent system designed to accelerate the development of such base-level systems, thereby reducing the computational cost and the burden on social impact domain experts and AI researchers. Leveraging advancements in foundation models and large language models, our proposed approach focuses on resource allocation problems providing help across the full AI4SI pipeline from problem formulation over solution design to impact evaluation. We highlight the ethical considerations and challenges inherent in deploying such systems and emphasize the importance of a human-in-the-loop approach to ensure the responsible and effective application of AI systems.
Due to the challenges in acquiring paired Text-3D data and the inherent irregularity of 3D data structures, combined representation learning of 3D point clouds and text remains unexplored. In this paper, we propose a novel Riemann-based Multi-scale Attention Reasoning Network (RMARN) for text-3D retrieval. Specifically, the extracted text and point cloud features are refined by their respective Adaptive Feature Refiner (AFR). Furthermore, we introduce the innovative Riemann Local Similarity (RLS) module and the Global Pooling Similarity (GPS) module. However, as 3D point cloud data and text data often possess complex geometric structures in high-dimensional space, the proposed RLS employs a novel Riemann Attention Mechanism to reflect the intrinsic geometric relationships of the data. Without explicitly defining the manifold, RMARN learns the manifold parameters to better represent the distances between text-point cloud samples. To address the challenges of lacking paired text-3D data, we have created the large-scale Text-3D Retrieval dataset T3DR-HIT, which comprises over 3,380 pairs of text and point cloud data. T3DR-HIT contains coarse-grained indoor 3D scenes and fine-grained Chinese artifact scenes, consisting of 1,380 and over 2,000 text-3D pairs, respectively. Experiments on our custom datasets demonstrate the superior performance of the proposed method. Our code and proposed datasets are available at \url{//github.com/liwrui/RMARN}.
Computing power has evolved into a foundational and indispensable resource in the area of deep learning, particularly in tasks such as Face Recognition (FR) model training on large-scale datasets, where multiple GPUs are often a necessity. Recognizing this challenge, some FR methods have started exploring ways to compress the fully-connected layer in FR models. Unlike other approaches, our observations reveal that without prompt scheduling of the learning rate (LR) during FR model training, the loss curve tends to exhibit numerous stationary subsequences. To address this issue, we introduce a novel LR scheduler leveraging Exponential Moving Average (EMA) and Haar Convolutional Kernel (HCK) to eliminate stationary subsequences, resulting in a significant reduction in converging time. However, the proposed scheduler incurs a considerable computational overhead due to its time complexity. To overcome this limitation, we propose FastFace, a fast-converging scheduler with negligible time complexity, i.e. O(1) per iteration, during training. In practice, FastFace is able to accelerate FR model training to a quarter of its original time without sacrificing more than 1% accuracy, making large-scale FR training feasible even with just one single GPU in terms of both time and space complexity. Extensive experiments validate the efficiency and effectiveness of FastFace. The code is publicly available at: //github.com/amoonfana/FastFace
There is no doubt that advanced artificial intelligence models and high quality data are the keys to success in developing computational pathology tools. Although the overall volume of pathology data keeps increasing, a lack of quality data is a common issue when it comes to a specific task due to several reasons including privacy and ethical issues with patient data. In this work, we propose to exploit knowledge distillation, i.e., utilize the existing model to learn a new, target model, to overcome such issues in computational pathology. Specifically, we employ a student-teacher framework to learn a target model from a pre-trained, teacher model without direct access to source data and distill relevant knowledge via momentum contrastive learning with multi-head attention mechanism, which provides consistent and context-aware feature representations. This enables the target model to assimilate informative representations of the teacher model while seamlessly adapting to the unique nuances of the target data. The proposed method is rigorously evaluated across different scenarios where the teacher model was trained on the same, relevant, and irrelevant classification tasks with the target model. Experimental results demonstrate the accuracy and robustness of our approach in transferring knowledge to different domains and tasks, outperforming other related methods. Moreover, the results provide a guideline on the learning strategy for different types of tasks and scenarios in computational pathology. Code is available at: \url{//github.com/trinhvg/MoMA}.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.