亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the realm of Large Language Models, the balance between instruction data quality and quantity has become a focal point. Recognizing this, we introduce a self-guided methodology for LLMs to autonomously discern and select cherry samples from vast open-source datasets, effectively minimizing manual curation and potential cost for instruction tuning an LLM. Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal tool to identify discrepancies between a model's expected responses and its autonomous generation prowess. Through the adept application of IFD, cherry samples are pinpointed, leading to a marked uptick in model training efficiency. Empirical validations on renowned datasets like Alpaca and WizardLM underpin our findings; with a mere 10% of conventional data input, our strategy showcases improved results. This synthesis of self-guided cherry-picking and the IFD metric signifies a transformative leap in the optimization of LLMs, promising both efficiency and resource-conscious advancements.

相關內容

Out-of-Distribution (OOD) Generalization aims to learn robust models that generalize well to various environments without fitting to distribution-specific features. Recent studies based on Lottery Ticket Hypothesis (LTH) address this problem by minimizing the learning target to find some of the parameters that are critical to the task. However, in OOD problems, such solutions are suboptimal as the learning task contains severe distribution noises, which can mislead the optimization process. Therefore, apart from finding the task-related parameters (i.e., invariant parameters), we propose Exploring Variant parameters for Invariant Learning (EVIL) which also leverages the distribution knowledge to find the parameters that are sensitive to distribution shift (i.e., variant parameters). Once the variant parameters are left out of invariant learning, a robust subnetwork that is resistant to distribution shift can be found. Additionally, the parameters that are relatively stable across distributions can be considered invariant ones to improve invariant learning. By fully exploring both variant and invariant parameters, our EVIL can effectively identify a robust subnetwork to improve OOD generalization. In extensive experiments on integrated testbed: DomainBed, EVIL can effectively and efficiently enhance many popular methods, such as ERM, IRM, SAM, etc.

We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling. Our framework invokes low-level controllers - either learned or implicit in position-command control - to stabilize imitation around expert demonstrations. We show that with (a) a suitable low-level stability guarantee and (b) a powerful enough generative model as our imitation learner, pure supervised behavior cloning can generate trajectories matching the per-time step distribution of essentially arbitrary expert trajectories in an optimal transport cost. Our analysis relies on a stochastic continuity property of the learned policy we call "total variation continuity" (TVC). We then show that TVC can be ensured with minimal degradation of accuracy by combining a popular data-augmentation regimen with a novel algorithmic trick: adding augmentation noise at execution time. We instantiate our guarantees for policies parameterized by diffusion models and prove that if the learner accurately estimates the score of the (noise-augmented) expert policy, then the distribution of imitator trajectories is close to the demonstrator distribution in a natural optimal transport distance. Our analysis constructs intricate couplings between noise-augmented trajectories, a technique that may be of independent interest. We conclude by empirically validating our algorithmic recommendations, and discussing implications for future research directions for better behavior cloning with generative modeling.

A cost-effective alternative to manual data labeling is weak supervision (WS), where data samples are automatically annotated using a predefined set of labeling functions (LFs), rule-based mechanisms that generate artificial labels for the associated classes. In this work, we investigate noise reduction techniques for WS based on the principle of k-fold cross-validation. We introduce a new algorithm ULF for Unsupervised Labeling Function correction, which denoises WS data by leveraging models trained on all but some LFs to identify and correct biases specific to the held-out LFs. Specifically, ULF refines the allocation of LFs to classes by re-estimating this assignment on highly reliable cross-validated samples. Evaluation on multiple datasets confirms ULF's effectiveness in enhancing WS learning without the need for manual labeling.

Scaling laws have been recently employed to derive compute-optimal model size (number of parameters) for a given compute duration. We advance and refine such methods to infer compute-optimal model shapes, such as width and depth, and successfully implement this in vision transformers. Our shape-optimized vision transformer, SoViT, achieves results competitive with models that exceed twice its size, despite being pre-trained with an equivalent amount of compute. For example, SoViT-400m/14 achieves 90.3% fine-tuning accuracy on ILSRCV2012, surpassing the much larger ViT-g/14 and approaching ViT-G/14 under identical settings, with also less than half the inference cost. We conduct a thorough evaluation across multiple tasks, such as image classification, captioning, VQA and zero-shot transfer, demonstrating the effectiveness of our model across a broad range of domains and identifying limitations. Overall, our findings challenge the prevailing approach of blindly scaling up vision models and pave a path for a more informed scaling.

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.

Label aggregation such as majority voting is commonly used to resolve annotator disagreement in dataset creation. However, this may disregard minority values and opinions. Recent studies indicate that learning from individual annotations outperforms learning from aggregated labels, though they require a considerable amount of annotation. Active learning, as an annotation cost-saving strategy, has not been fully explored in the context of learning from disagreement. We show that in the active learning setting, a multi-head model performs significantly better than a single-head model in terms of uncertainty estimation. By designing and evaluating acquisition functions with annotator-specific heads on two datasets, we show that group-level entropy works generally well on both datasets. Importantly, it achieves performance in terms of both prediction and uncertainty estimation comparable to full-scale training from disagreement, while saving up to 70% of the annotation budget.

Large integer factorization is a prominent research challenge, particularly in the context of quantum computing. This holds significant importance, especially in information security that relies on public key cryptosystems. The classical computation of prime factors for an integer has exponential time complexity. Quantum computing offers the potential for significantly faster computational processes compared to classical processors. In this paper, we propose a new quantum algorithm, Shallow Depth Factoring (SDF), to factor a biprime integer. SDF consists of three steps. First, it converts a factoring problem to an optimization problem without an objective function. Then, it uses a Quantum Feasibility Labeling (QFL) method to label every possible solution according to whether it is feasible or infeasible for the optimization problem. Finally, it employs the Variational Quantum Search (VQS) to find all feasible solutions. The SDF utilizes shallow-depth quantum circuits for efficient factorization, with the circuit depth scaling linearly as the integer to be factorized increases. Through minimizing the number of gates in the circuit, the algorithm enhances feasibility and reduces vulnerability to errors.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.

北京阿比特科技有限公司