Recent advances in structured 3D Gaussians for view-adaptive rendering, particularly through methods like Scaffold-GS, have demonstrated promising results in neural scene representation. However, existing approaches still face challenges in perceptual consistency and precise view-dependent effects. We present PEP-GS, a novel framework that enhances structured 3D Gaussians through three key innovations: (1) a Local-Enhanced Multi-head Self-Attention (LEMSA) mechanism that replaces spherical harmonics for more accurate view-dependent color decoding, and (2) Kolmogorov-Arnold Networks (KAN) that optimize Gaussian opacity and covariance functions for enhanced interpretability and splatting precision. (3) a Neural Laplacian Pyramid Decomposition (NLPD) that improves perceptual similarity across views. Our comprehensive evaluation across multiple datasets indicates that, compared to the current state-of-the-art methods, these improvements are particularly evident in challenging scenarios such as view-dependent effects, specular reflections, fine-scale details and false geometry generation.
Recent advances in LLMs, particularly in language reasoning and tool integration, have rapidly sparked the real-world development of Language Agents. Among these, travel planning represents a prominent domain, combining academic challenges with practical value due to its complexity and market demand. However, existing benchmarks fail to reflect the diverse, real-world requirements crucial for deployment. To address this gap, we introduce ChinaTravel, a benchmark specifically designed for authentic Chinese travel planning scenarios. We collect the travel requirements from questionnaires and propose a compositionally generalizable domain-specific language that enables a scalable evaluation process, covering feasibility, constraint satisfaction, and preference comparison. Empirical studies reveal the potential of neuro-symbolic agents in travel planning, achieving a constraint satisfaction rate of 27.9%, significantly surpassing purely neural models at 2.6%. Moreover, we identify key challenges in real-world travel planning deployments, including open language reasoning and unseen concept composition. These findings highlight the significance of ChinaTravel as a pivotal milestone for advancing language agents in complex, real-world planning scenarios.
We propose AV-Link, a unified framework for Video-to-Audio and Audio-to-Video generation that leverages the activations of frozen video and audio diffusion models for temporally-aligned cross-modal conditioning. The key to our framework is a Fusion Block that enables bidirectional information exchange between our backbone video and audio diffusion models through a temporally-aligned self attention operation. Unlike prior work that uses feature extractors pretrained for other tasks for the conditioning signal, AV-Link can directly leverage features obtained by the complementary modality in a single framework i.e. video features to generate audio, or audio features to generate video. We extensively evaluate our design choices and demonstrate the ability of our method to achieve synchronized and high-quality audiovisual content, showcasing its potential for applications in immersive media generation. Project Page: snap-research.github.io/AVLink/
Recent advances in machine learning, particularly Large Language Models (LLMs) such as BERT and GPT, provide rich contextual embeddings that improve text representation. However, current document clustering approaches often ignore the deeper relationships between named entities (NEs) and the potential of LLM embeddings. This paper proposes a novel approach that integrates Named Entity Recognition (NER) and LLM embeddings within a graph-based framework for document clustering. The method builds a graph with nodes representing documents and edges weighted by named entity similarity, optimized using a graph-convolutional network (GCN). This ensures a more effective grouping of semantically related documents. Experimental results indicate that our approach outperforms conventional co-occurrence-based methods in clustering, notably for documents rich in named entities.
Due to the sensitivity of data, Federated Learning (FL) is employed to enable distributed machine learning while safeguarding data privacy and accommodating the requirements of various devices. However, in the context of semi-decentralized FL, clients' communication and training states are dynamic. This variability arises from local training fluctuations, heterogeneous data distributions, and intermittent client participation. Most existing studies primarily focus on stable client states, neglecting the dynamic challenges inherent in real-world scenarios. To tackle this issue, we propose a TRust-Aware clIent scheduLing mechanism called TRAIL, which assesses client states and contributions, enhancing model training efficiency through selective client participation. We focus on a semi-decentralized FL framework where edge servers and clients train a shared global model using unreliable intra-cluster model aggregation and inter-cluster model consensus. First, we propose an adaptive hidden semi-Markov model to estimate clients' communication states and contributions. Next, we address a client-server association optimization problem to minimize global training loss. Using convergence analysis, we propose a greedy client scheduling algorithm. Finally, our experiments conducted on real-world datasets demonstrate that TRAIL outperforms state-of-the-art baselines, achieving an improvement of 8.7% in test accuracy and a reduction of 15.3% in training loss.
Traditional greedy tokenization methods have been a critical step in Natural Language Processing (NLP), influencing how text is converted into tokens and directly impacting model performance. While subword tokenizers like Byte-Pair Encoding (BPE) are widely used, questions remain about their optimality across model scales and languages. In this work, we demonstrate through extensive experiments that an optimal BPE configuration significantly reduces token count compared to greedy segmentation, yielding improvements in token-saving percentages and performance benefits, particularly for smaller models. We evaluate tokenization performance across various intrinsic and extrinsic tasks, including generation and classification. Our findings suggest that compression-optimized tokenization strategies could provide substantial advantages for multilingual and low-resource language applications, highlighting a promising direction for further research and inclusive NLP.
Sign Language Production (SLP) aims to generate semantically consistent sign videos from textual statements, where the conversion from textual glosses to sign poses (G2P) is a crucial step. Existing G2P methods typically treat sign poses as discrete three-dimensional coordinates and directly fit them, which overlooks the relative positional relationships among joints. To this end, we provide a new perspective, constraining joint associations and gesture details by modeling the limb bones to improve the accuracy and naturalness of the generated poses. In this work, we propose a pioneering iconicity disentangled diffusion framework, termed Sign-IDD, specifically designed for SLP. Sign-IDD incorporates a novel Iconicity Disentanglement (ID) module to bridge the gap between relative positions among joints. The ID module disentangles the conventional 3D joint representation into a 4D bone representation, comprising the 3D spatial direction vector and 1D spatial distance vector between adjacent joints. Additionally, an Attribute Controllable Diffusion (ACD) module is introduced to further constrain joint associations, in which the attribute separation layer aims to separate the bone direction and length attributes, and the attribute control layer is designed to guide the pose generation by leveraging the above attributes. The ACD module utilizes the gloss embeddings as semantic conditions and finally generates sign poses from noise embeddings. Extensive experiments on PHOENIX14T and USTC-CSL datasets validate the effectiveness of our method. The code is available at: //github.com/NaVi-start/Sign-IDD.
Large language models (LLMs) have demonstrated remarkable effectiveness in text reranking through works like RankGPT, leveraging their human-like reasoning about relevance. However, supervised fine-tuning for ranking often diminishes these models' general-purpose capabilities, including the crucial reasoning abilities that make them valuable for ranking. We introduce a novel approach integrating Chain-of-Thought prompting with an SFT-DPO (Supervised Fine-Tuning followed by Direct Preference Optimization) pipeline to preserve these capabilities while improving ranking performance. Our experiments on TREC 2019 and 2020 Deep Learning datasets show that our approach outperforms the state-of-the-art RankZephyr while maintaining strong performance on the Massive Multitask Language Understanding (MMLU) benchmark, demonstrating effective preservation of general-purpose capabilities through thoughtful fine-tuning strategies. Our code and data will be publicly released upon the acceptance of the paper.
Recent advancements in large language models (LLMs) have shown impressive versatility across various tasks. To eliminate its hallucinations, retrieval-augmented generation (RAG) has emerged as a powerful approach, leveraging external knowledge sources like knowledge graphs (KGs). In this paper, we study the task of KG-driven RAG and propose a novel Similar Graph Enhanced Retrieval-Augmented Generation (SimGRAG) method. It effectively addresses the challenge of aligning query texts and KG structures through a two-stage process: (1) query-to-pattern, which uses an LLM to transform queries into a desired graph pattern, and (2) pattern-to-subgraph, which quantifies the alignment between the pattern and candidate subgraphs using a graph semantic distance (GSD) metric. We also develop an optimized retrieval algorithm that efficiently identifies the top-$k$ subgraphs within 1-second latency on a 10-million-scale KG. Extensive experiments show that SimGRAG outperforms state-of-the-art KG-driven RAG methods in both question answering and fact verification, offering superior plug-and-play usability and scalability.
We propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and language. ERNIE-ViL tries to construct the detailed semantic connections (objects, attributes of objects and relationships between objects in visual scenes) across vision and language, which are essential to vision-language cross-modal tasks. Incorporating knowledge from scene graphs, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction in the pre-training phase. More specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can model the joint representation characterizing the alignments of the detailed semantics across vision and language. Pre-trained on two large image-text alignment datasets (Conceptual Captions and SBU), ERNIE-ViL learns better and more robust joint representations. It achieves state-of-the-art performance on 5 vision-language downstream tasks after fine-tuning ERNIE-ViL. Furthermore, it ranked the 1st place on the VCR leader-board with an absolute improvement of 3.7%.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.