Neural implicit surface representations are currently receiving a lot of interest as a means to achieve high-fidelity surface reconstruction at a low memory cost, compared to traditional explicit representations.However, state-of-the-art methods still struggle with excessive memory usage and non-smooth surfaces. This is particularly problematic in large-scale applications with sparse inputs, as is common in robotics use cases. To address these issues, we first introduce a sparse structure, \emph{tri-quadtrees}, which represents the environment using learnable features stored in three planar quadtree projections. Secondly, we concatenate the learnable features with a Fourier feature positional encoding. The combined features are then decoded into signed distance values through a small multi-layer perceptron. We demonstrate that this approach facilitates smoother reconstruction with a higher completion ratio with fewer holes. Compared to two recent baselines, one implicit and one explicit, our approach requires only 10\%--50\% as much memory, while achieving competitive quality.
Detecting objects across various scales remains a significant challenge in computer vision, particularly in tasks such as Rice Leaf Disease (RLD) detection, where objects exhibit considerable scale variations. Traditional object detection methods often struggle to address these variations, resulting in missed detections or reduced accuracy. In this study, we propose the multi-scale Attention Pyramid module (mAPm), a novel approach that integrates dilated convolutions into the Feature Pyramid Network (FPN) to enhance multi-scale information ex-traction. Additionally, we incorporate a global Multi-Head Self-Attention (MHSA) mechanism and a deconvolutional layer to refine the up-sampling process. We evaluate mAPm on YOLOv7 using the MRLD and COCO datasets. Compared to vanilla FPN, BiFPN, NAS-FPN, PANET, and ACFPN, mAPm achieved a significant improvement in Average Precision (AP), with a +2.61% increase on the MRLD dataset compared to the baseline FPN method in YOLOv7. This demonstrates its effectiveness in handling scale variations. Furthermore, the versatility of mAPm allows its integration into various FPN-based object detection models, showcasing its potential to advance object detection techniques.
Although the multi-jointed underactuated manipulator is highly dexterous, its grasping capacity does not match that of the parallel jaw gripper. This work introduces a fractal gripper to enhance the grasping capacity of multi-joint underactuated manipulators, preserving their passive clamping features. We describe in detail the working principle and manufacturing process of the fractal gripper. This work, inspired by the 'Fractal Vise' structure, resulted in the invention of a fractal gripper with mode switching capabilities. The fractal gripper inherits the inherent adaptive properties of the fractal structure and realizes the self-resetting function by integrating spring into the original design, thereby enhancing the efficiency of object grasping tasks. The fractal gripper prevents object damage by distributing pressure evenly and applying it at multiple points through its fractal structure during closure. Objects of various shapes are effectively grasped by the fractal gripper, which ensures a safe and secure grasp. The superior performance was provided by the force distribution characteristics of the fractal gripper. By applying the flexible polymer PDMS, which possesses superior elasticity, to the fractal structure's wrapping surface, potential scratching during grasping is effectively prevented, thus protecting the object's geometric surface. Grab experiments with objects of diverse shapes and sizes confirm fractal gripper multi-scale adaptability and superior grasping stability.
Speech-to-speech translation is yet to reach the same level of coverage as text-to-text translation systems. The current speech technology is highly limited in its coverage of over 7000 languages spoken worldwide, leaving more than half of the population deprived of such technology and shared experiences. With voice-assisted technology (such as social robots and speech-to-text apps) and auditory content (such as podcasts and lectures) on the rise, ensuring that the technology is available for all is more important than ever. Speech translation can play a vital role in mitigating technological disparity and creating a more inclusive society. With a motive to contribute towards speech translation research for low-resource languages, our work presents a direct speech-to-speech translation model for one of the Indic languages called Punjabi to English. Additionally, we explore the performance of using a discrete representation of speech called discrete acoustic units as input to the Transformer-based translation model. The model, abbreviated as Unit-to-Unit Translation (U2UT), takes a sequence of discrete units of the source language (the language being translated from) and outputs a sequence of discrete units of the target language (the language being translated to). Our results show that the U2UT model performs better than the Speech-to-Unit Translation (S2UT) model by a 3.69 BLEU score.
The need for high-quality automated seizure detection algorithms based on electroencephalography (EEG) becomes ever more pressing with the increasing use of ambulatory and long-term EEG monitoring. Heterogeneity in validation methods of these algorithms influences the reported results and makes comprehensive evaluation and comparison challenging. This heterogeneity concerns in particular the choice of datasets, evaluation methodologies, and performance metrics. In this paper, we propose a unified framework designed to establish standardization in the validation of EEG-based seizure detection algorithms. Based on existing guidelines and recommendations, the framework introduces a set of recommendations and standards related to datasets, file formats, EEG data input content, seizure annotation input and output, cross-validation strategies, and performance metrics. We also propose the 10-20 seizure detection benchmark, a machine-learning benchmark based on public datasets converted to a standardized format. This benchmark defines the machine-learning task as well as reporting metrics. We illustrate the use of the benchmark by evaluating a set of existing seizure detection algorithms. The SzCORE (Seizure Community Open-source Research Evaluation) framework and benchmark are made publicly available along with an open-source software library to facilitate research use, while enabling rigorous evaluation of the clinical significance of the algorithms, fostering a collective effort to more optimally detect seizures to improve the lives of people with epilepsy.
Knowing which countries contribute the most to pushing the boundaries of knowledge in science and technology has social and political importance. However, common citation metrics do not adequately measure this contribution. This measure requires more stringent metrics appropriate for the highly influential breakthrough papers that push the boundaries of knowledge, which are very highly cited but very rare. Here I used the recently described Rk index, specifically designed to address this issue. I applied this index to 25 countries and the EU across 10 key research topics, five technological and five biomedical, studying domestic and international collaborative papers independently. In technological topics, the Rk indices of domestic papers show that overall, the USA, China, and the EU are leaders; other countries are clearly behind. The USA is notably ahead of China, and the EU is far behind China. The same approach to biomedical topics shows an overwhelming dominance of the USA and that the EU is ahead of China. The analysis of internationally collaborative papers further demonstrates the US dominance. These results conflict with current country rankings based on less stringent indicators.
We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.
Vessel segmentation and centerline extraction are two crucial preliminary tasks for many computer-aided diagnosis tools dealing with vascular diseases. Recently, deep-learning based methods have been widely applied to these tasks. However, classic deep-learning approaches struggle to capture the complex geometry and specific topology of vascular networks, which is of the utmost importance in most applications. To overcome these limitations, the clDice loss, a topological loss that focuses on the vessel centerlines, has been recently proposed. This loss requires computing, with a proposed soft-skeleton algorithm, the skeletons of both the ground truth and the predicted segmentation. However, the soft-skeleton algorithm provides suboptimal results on 3D images, which makes the clDice hardly suitable on 3D images. In this paper, we propose to replace the soft-skeleton algorithm by a U-Net which computes the vascular skeleton directly from the segmentation. We show that our method provides more accurate skeletons than the soft-skeleton algorithm. We then build upon this network a cascaded U-Net trained with the clDice loss to embed topological constraints during the segmentation. The resulting model is able to predict both the vessel segmentation and centerlines with a more accurate topology.
Creating large-scale high-quality labeled datasets is a major bottleneck in supervised machine learning workflows. Threshold-based auto-labeling (TBAL), where validation data obtained from humans is used to find a confidence threshold above which the data is machine-labeled, reduces reliance on manual annotation. TBAL is emerging as a widely-used solution in practice. Given the long shelf-life and diverse usage of the resulting datasets, understanding when the data obtained by such auto-labeling systems can be relied on is crucial. This is the first work to analyze TBAL systems and derive sample complexity bounds on the amount of human-labeled validation data required for guaranteeing the quality of machine-labeled data. Our results provide two crucial insights. First, reasonable chunks of unlabeled data can be automatically and accurately labeled by seemingly bad models. Second, a hidden downside of TBAL systems is potentially prohibitive validation data usage. Together, these insights describe the promise and pitfalls of using such systems. We validate our theoretical guarantees with extensive experiments on synthetic and real datasets.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.