{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide (NO$_2$))-specific exposures and birth outcomes for 2012 in Harris County, Texas, using several approaches, including the newly developed method.

相關內容

There has been significant interest in understanding how practical constraints on contemporary quantum devices impact the complexity of quantum learning. For the classic question of tomography, recent work tightly characterized the copy complexity for any protocol that can only measure one copy of the unknown state at a time, showing it is polynomially worse than if one can make fully-entangled measurements. While we now have a fairly complete picture of the rates for such tasks in the near-term and fault-tolerant regimes, it remains poorly understood what the landscape in between looks like. In this work, we study tomography in the natural setting where one can make measurements of $t$ copies at a time. For sufficiently small $\epsilon$, we show that for any $t \le d^2$, $\widetilde{\Theta}(\frac{d^3}{\sqrt{t}\epsilon^2})$ copies are necessary and sufficient to learn an unknown $d$-dimensional state $\rho$ to trace distance $\epsilon$. This gives a smooth and optimal interpolation between the known rates for single-copy and fully-entangled measurements. To our knowledge, this is the first smooth entanglement-copy tradeoff known for any quantum learning task, and for tomography, no intermediate point on this curve was known, even at $t = 2$. An important obstacle is that unlike the optimal single-copy protocol, the optimal fully-entangled protocol is inherently biased and thus precludes naive batching approaches. Instead, we devise a novel two-stage procedure that uses Keyl's algorithm to refine a crude estimate for $\rho$ based on single-copy measurements. A key insight is to use Schur-Weyl sampling not to estimate the spectrum of $\rho$, but to estimate the deviation of $\rho$ from the maximally mixed state. When $\rho$ is far from the maximally mixed state, we devise a novel quantum splitting procedure that reduces to the case where $\rho$ is close to maximally mixed.

In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.

Interpolation of data on non-Euclidean spaces is an active research area fostered by its numerous applications. This work considers the Hermite interpolation problem: finding a sufficiently smooth manifold curve that interpolates a collection of data points on a Riemannian manifold while matching a prescribed derivative at each point. We propose a novel procedure relying on the general concept of retractions to solve this problem on a large class of manifolds, including those for which computing the Riemannian exponential or logarithmic maps is not straightforward, such as the manifold of fixed-rank matrices. We analyze the well-posedness of the method by introducing and showing the existence of retraction-convex sets, a generalization of geodesically convex sets. We extend to the manifold setting a classical result on the asymptotic interpolation error of Hermite interpolation. We finally illustrate these results and the effectiveness of the method with numerical experiments on the manifold of fixed-rank matrices and the Stiefel manifold of matrices with orthonormal columns.

This essay provides a comprehensive analysis of the optimization and performance evaluation of various routing algorithms within the context of computer networks. Routing algorithms are critical for determining the most efficient path for data transmission between nodes in a network. The efficiency, reliability, and scalability of a network heavily rely on the choice and optimization of its routing algorithm. This paper begins with an overview of fundamental routing strategies, including shortest path, flooding, distance vector, and link state algorithms, and extends to more sophisticated techniques.

The ability to extract material parameters of perovskite from quantitative experimental analysis is essential for rational design of photovoltaic and optoelectronic applications. However, the difficulty of this analysis increases significantly with the complexity of the theoretical model and the number of material parameters for perovskite. Here we use Gaussian process to develop an analysis platform that can extract up to 8 fundamental material parameters of an organometallic perovskite semiconductor from a transient photoluminescence experiment, based on a complex full physics model that includes drift-diffusion of carriers and dynamic defect occupation. An example study of thermal degradation reveals that changes in doping concentration and carrier mobility dominate, while the defect energy level remains nearly unchanged. This platform can be conveniently applied to other experiments or to combinations of experiments, accelerating materials discovery and optimization of semiconductor materials for photovoltaics and other applications.

To achieve near-zero training error in a classification problem, the layers of a feed-forward network have to disentangle the manifolds of data points with different labels, to facilitate the discrimination. However, excessive class separation can bring to overfitting since good generalisation requires learning invariant features, which involve some level of entanglement. We report on numerical experiments showing how the optimisation dynamics finds representations that balance these opposing tendencies with a non-monotonic trend. After a fast segregation phase, a slower rearrangement (conserved across data sets and architectures) increases the class entanglement.The training error at the inversion is stable under subsampling, and across network initialisations and optimisers, which characterises it as a property solely of the data structure and (very weakly) of the architecture. The inversion is the manifestation of tradeoffs elicited by well-defined and maximally stable elements of the training set, coined ``stragglers'', particularly influential for generalisation.

Living organisms interact with their surroundings in a closed-loop fashion, where sensory inputs dictate the initiation and termination of behaviours. Even simple animals are able to develop and execute complex plans, which has not yet been replicated in robotics using pure closed-loop input control. We propose a solution to this problem by defining a set of discrete and temporary closed-loop controllers, called "tasks", each representing a closed-loop behaviour. We further introduce a supervisory module which has an innate understanding of physics and causality, through which it can simulate the execution of task sequences over time and store the results in a model of the environment. On the basis of this model, plans can be made by chaining temporary closed-loop controllers. The proposed framework was implemented for a real robot and tested in two scenarios as proof of concept.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Knowing which countries contribute the most to pushing the boundaries of knowledge in science and technology has social and political importance. However, common citation metrics do not adequately measure this contribution. This measure requires more stringent metrics appropriate for the highly influential breakthrough papers that push the boundaries of knowledge, which are very highly cited but very rare. Here I used the recently described Rk index, specifically designed to address this issue. I applied this index to 25 countries and the EU across 10 key research topics, five technological and five biomedical, studying domestic and international collaborative papers independently. In technological topics, the Rk indices of domestic papers show that overall, the USA, China, and the EU are leaders; other countries are clearly behind. The USA is notably ahead of China, and the EU is far behind China. The same approach to biomedical topics shows an overwhelming dominance of the USA and that the EU is ahead of China. The analysis of internationally collaborative papers further demonstrates the US dominance. These results conflict with current country rankings based on less stringent indicators.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司
2$))-specific exposures and birth outcomes for 2012 in Harris County, Texas, using several approaches, including the newly developed method. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accounting for exposure measurement errors has been recognized as a crucial problem in environmental epidemiology for over two decades. Bayesian hierarchical models offer a coherent probabilistic framework for evaluating associations between environmental exposures and health effects, which take into account exposure measurement errors introduced by uncertainty in the estimated exposure as well as spatial misalignment between the exposure and health outcome data. While two-stage Bayesian analyses are often regarded as a good alternative to fully Bayesian analyses when joint estimation is not feasible, there has been minimal research on how to properly propagate uncertainty from the first-stage exposure model to the second-stage health model, especially in the case of a large number of participant locations along with spatially correlated exposures. We propose a scalable two-stage Bayesian approach, called a sparse multivariate normal (sparse MVN) prior approach, based on the Vecchia approximation for assessing associations between exposure and health outcomes in environmental epidemiology. We compare its performance with existing approaches through simulation. Our sparse MVN prior approach shows comparable performance with the fully Bayesian approach, which is a gold standard but is impossible to implement in some cases. We investigate the association between source-specific exposures and pollutant (nitrogen dioxide (NO$_2$))-specific exposures and birth outcomes for 2012 in Harris County, Texas, using several approaches, including the newly developed method.

相關內容

There has been significant interest in understanding how practical constraints on contemporary quantum devices impact the complexity of quantum learning. For the classic question of tomography, recent work tightly characterized the copy complexity for any protocol that can only measure one copy of the unknown state at a time, showing it is polynomially worse than if one can make fully-entangled measurements. While we now have a fairly complete picture of the rates for such tasks in the near-term and fault-tolerant regimes, it remains poorly understood what the landscape in between looks like. In this work, we study tomography in the natural setting where one can make measurements of $t$ copies at a time. For sufficiently small $\epsilon$, we show that for any $t \le d^2$, $\widetilde{\Theta}(\frac{d^3}{\sqrt{t}\epsilon^2})$ copies are necessary and sufficient to learn an unknown $d$-dimensional state $\rho$ to trace distance $\epsilon$. This gives a smooth and optimal interpolation between the known rates for single-copy and fully-entangled measurements. To our knowledge, this is the first smooth entanglement-copy tradeoff known for any quantum learning task, and for tomography, no intermediate point on this curve was known, even at $t = 2$. An important obstacle is that unlike the optimal single-copy protocol, the optimal fully-entangled protocol is inherently biased and thus precludes naive batching approaches. Instead, we devise a novel two-stage procedure that uses Keyl's algorithm to refine a crude estimate for $\rho$ based on single-copy measurements. A key insight is to use Schur-Weyl sampling not to estimate the spectrum of $\rho$, but to estimate the deviation of $\rho$ from the maximally mixed state. When $\rho$ is far from the maximally mixed state, we devise a novel quantum splitting procedure that reduces to the case where $\rho$ is close to maximally mixed.

In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.

Interpolation of data on non-Euclidean spaces is an active research area fostered by its numerous applications. This work considers the Hermite interpolation problem: finding a sufficiently smooth manifold curve that interpolates a collection of data points on a Riemannian manifold while matching a prescribed derivative at each point. We propose a novel procedure relying on the general concept of retractions to solve this problem on a large class of manifolds, including those for which computing the Riemannian exponential or logarithmic maps is not straightforward, such as the manifold of fixed-rank matrices. We analyze the well-posedness of the method by introducing and showing the existence of retraction-convex sets, a generalization of geodesically convex sets. We extend to the manifold setting a classical result on the asymptotic interpolation error of Hermite interpolation. We finally illustrate these results and the effectiveness of the method with numerical experiments on the manifold of fixed-rank matrices and the Stiefel manifold of matrices with orthonormal columns.

This essay provides a comprehensive analysis of the optimization and performance evaluation of various routing algorithms within the context of computer networks. Routing algorithms are critical for determining the most efficient path for data transmission between nodes in a network. The efficiency, reliability, and scalability of a network heavily rely on the choice and optimization of its routing algorithm. This paper begins with an overview of fundamental routing strategies, including shortest path, flooding, distance vector, and link state algorithms, and extends to more sophisticated techniques.

The ability to extract material parameters of perovskite from quantitative experimental analysis is essential for rational design of photovoltaic and optoelectronic applications. However, the difficulty of this analysis increases significantly with the complexity of the theoretical model and the number of material parameters for perovskite. Here we use Gaussian process to develop an analysis platform that can extract up to 8 fundamental material parameters of an organometallic perovskite semiconductor from a transient photoluminescence experiment, based on a complex full physics model that includes drift-diffusion of carriers and dynamic defect occupation. An example study of thermal degradation reveals that changes in doping concentration and carrier mobility dominate, while the defect energy level remains nearly unchanged. This platform can be conveniently applied to other experiments or to combinations of experiments, accelerating materials discovery and optimization of semiconductor materials for photovoltaics and other applications.

To achieve near-zero training error in a classification problem, the layers of a feed-forward network have to disentangle the manifolds of data points with different labels, to facilitate the discrimination. However, excessive class separation can bring to overfitting since good generalisation requires learning invariant features, which involve some level of entanglement. We report on numerical experiments showing how the optimisation dynamics finds representations that balance these opposing tendencies with a non-monotonic trend. After a fast segregation phase, a slower rearrangement (conserved across data sets and architectures) increases the class entanglement.The training error at the inversion is stable under subsampling, and across network initialisations and optimisers, which characterises it as a property solely of the data structure and (very weakly) of the architecture. The inversion is the manifestation of tradeoffs elicited by well-defined and maximally stable elements of the training set, coined ``stragglers'', particularly influential for generalisation.

Living organisms interact with their surroundings in a closed-loop fashion, where sensory inputs dictate the initiation and termination of behaviours. Even simple animals are able to develop and execute complex plans, which has not yet been replicated in robotics using pure closed-loop input control. We propose a solution to this problem by defining a set of discrete and temporary closed-loop controllers, called "tasks", each representing a closed-loop behaviour. We further introduce a supervisory module which has an innate understanding of physics and causality, through which it can simulate the execution of task sequences over time and store the results in a model of the environment. On the basis of this model, plans can be made by chaining temporary closed-loop controllers. The proposed framework was implemented for a real robot and tested in two scenarios as proof of concept.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Knowing which countries contribute the most to pushing the boundaries of knowledge in science and technology has social and political importance. However, common citation metrics do not adequately measure this contribution. This measure requires more stringent metrics appropriate for the highly influential breakthrough papers that push the boundaries of knowledge, which are very highly cited but very rare. Here I used the recently described Rk index, specifically designed to address this issue. I applied this index to 25 countries and the EU across 10 key research topics, five technological and five biomedical, studying domestic and international collaborative papers independently. In technological topics, the Rk indices of domestic papers show that overall, the USA, China, and the EU are leaders; other countries are clearly behind. The USA is notably ahead of China, and the EU is far behind China. The same approach to biomedical topics shows an overwhelming dominance of the USA and that the EU is ahead of China. The analysis of internationally collaborative papers further demonstrates the US dominance. These results conflict with current country rankings based on less stringent indicators.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司