亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The compositional approach is important for reasoning about large and complex systems. In this work, we address synchronous systems with hierarchical structures, which are often used to model cyber-physical systems. We revisit the theory of reactive modules and reformulate it based on hypergraphs to clarify the parallel composition and the hierarchical description of modules. Then, we propose an automatic verification method for hierarchical systems. Given a system description annotated with assume-guarantee contracts, the proposed method divides the system into modules and verifies them separately to show that the top-level system satisfies its contract. Our method allows an input to be a circular system in which submodules mutually depend on each other. Experimental result shows our method can be effectively implemented using an SMT-based model checker.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · Extensibility · INFORMS · 語言模型化 ·
2024 年 4 月 30 日

Despite the surprisingly high intelligence exhibited by Large Language Models (LLMs), we are somehow intimidated to fully deploy them into real-life applications considering their black-box nature. Concept-based explanations arise as a promising avenue for explaining what the LLMs have learned, making them more transparent to humans. However, current evaluations for concepts tend to be heuristic and non-deterministic, e.g. case study or human evaluation, hindering the development of the field. To bridge the gap, we approach concept-based explanation evaluation via faithfulness and readability. We first introduce a formal definition of concept generalizable to diverse concept-based explanations. Based on this, we quantify faithfulness via the difference in the output upon perturbation. We then provide an automatic measure for readability, by measuring the coherence of patterns that maximally activate a concept. This measure serves as a cost-effective and reliable substitute for human evaluation. Finally, based on measurement theory, we describe a meta-evaluation method for evaluating the above measures via reliability and validity, which can be generalized to other tasks as well. Extensive experimental analysis has been conducted to validate and inform the selection of concept evaluation measures.

Building on the standard theory of process algebra with priorities, we identify a new scheduling mechanism, called "constructive reduction" which is designed to capture the essence of synchronous programming. The distinctive property of this evaluation strategy is to achieve determinacy-by-construction for multi-cast concurrent communication with shared memory. In the technical setting of CCS extended by clocks and priorities, we prove for a large class of "coherent" processes a confluence property for constructive reductions. We show that under some restrictions, called "pivotability", coherence is preserved by the operators of prefix, summation, parallel composition, restriction and hiding. Since this permits memory and sharing, we are able to cover a strictly larger class of processes compared to those in Milner's classical confluence theory for CCS without priorities.

Despite the surprisingly high intelligence exhibited by Large Language Models (LLMs), we are somehow intimidated to fully deploy them into real-life applications considering their black-box nature. Concept-based explanations arise as a promising avenue for explaining what the LLMs have learned, making them more transparent to humans. However, current evaluations for concepts tend to be heuristic and non-deterministic, e.g. case study or human evaluation, hindering the development of the field. To bridge the gap, we approach concept-based explanation evaluation via faithfulness and readability. We first introduce a formal definition of concept generalizable to diverse concept-based explanations. Based on this, we quantify faithfulness via the difference in the output upon perturbation. We then provide an automatic measure for readability, by measuring the coherence of patterns that maximally activate a concept. This measure serves as a cost-effective and reliable substitute for human evaluation. Finally, based on measurement theory, we describe a meta-evaluation method for evaluating the above measures via reliability and validity, which can be generalized to other tasks as well. Extensive experimental analysis has been conducted to validate and inform the selection of concept evaluation measures.

Efficient waste management and recycling heavily rely on garbage exploration and identification. In this study, we propose GSA2Seg (Garbage Segmentation and Attribute Analysis), a novel visual approach that utilizes quadruped robotic dogs as autonomous agents to address waste management and recycling challenges in diverse indoor and outdoor environments. Equipped with advanced visual perception system, including visual sensors and instance segmentators, the robotic dogs adeptly navigate their surroundings, diligently searching for common garbage items. Inspired by open-vocabulary algorithms, we introduce an innovative method for object attribute analysis. By combining garbage segmentation and attribute analysis techniques, the robotic dogs accurately determine the state of the trash, including its position and placement properties. This information enhances the robotic arm's grasping capabilities, facilitating successful garbage retrieval. Additionally, we contribute an image dataset, named GSA2D, to support evaluation. Through extensive experiments on GSA2D, this paper provides a comprehensive analysis of GSA2Seg's effectiveness. Dataset available: \href{//www.kaggle.com/datasets/hellob/gsa2d-2024}{//www.kaggle.com/datasets/hellob/gsa2d-2024}.

Recently, recommender system has achieved significant success. However, due to the openness of recommender systems, they remain vulnerable to malicious attacks. Additionally, natural noise in training data and issues such as data sparsity can also degrade the performance of recommender systems. Therefore, enhancing the robustness of recommender systems has become an increasingly important research topic. In this survey, we provide a comprehensive overview of the robustness of recommender systems. Based on our investigation, we categorize the robustness of recommender systems into adversarial robustness and non-adversarial robustness. In the adversarial robustness, we introduce the fundamental principles and classical methods of recommender system adversarial attacks and defenses. In the non-adversarial robustness, we analyze non-adversarial robustness from the perspectives of data sparsity, natural noise, and data imbalance. Additionally, we summarize commonly used datasets and evaluation metrics for evaluating the robustness of recommender systems. Finally, we also discuss the current challenges in the field of recommender system robustness and potential future research directions. Additionally, to facilitate fair and efficient evaluation of attack and defense methods in adversarial robustness, we propose an adversarial robustness evaluation library--ShillingREC, and we conduct evaluations of basic attack models and recommendation models. ShillingREC project is released at //github.com/chengleileilei/ShillingREC.

Existing work in fairness auditing assumes that each audit is performed independently. In this paper, we consider multiple agents working together, each auditing the same platform for different tasks. Agents have two levers: their collaboration strategy, with or without coordination beforehand, and their strategy for sampling appropriate data points. We theoretically compare the interplay of these levers. Our main findings are that (i) collaboration is generally beneficial for accurate audits, (ii) basic sampling methods often prove to be effective, and (iii) counter-intuitively, extensive coordination on queries often deteriorates audits accuracy as the number of agents increases. Experiments on three large datasets confirm our theoretical results. Our findings motivate collaboration during fairness audits of platforms that use ML models for decision-making.

Data-driven predictions are often perceived as inaccurate in hindsight due to behavioral responses. In this study, we explore the role of interface design choices in shaping individuals' decision-making processes in response to predictions presented on a shared information display in a strategic setting. We introduce a novel staged experimental design to investigate the effects of design features, such as visualizations of prediction uncertainty and error, within a repeated congestion game. In this game, participants assume the role of taxi drivers and use a shared information display to decide where to search for their next ride. Our experimental design endows agents with varying level-$k$ depths of thinking, allowing some agents to possess greater sophistication in anticipating the decisions of others using the same information display. Through several extensive experiments, we identify trade-offs between displays that optimize individual decisions and those that best serve the collective social welfare of the system. We find that the influence of display characteristics varies based on an agent's strategic sophistication. We observe that design choices promoting individual-level decision-making can lead to suboptimal system outcomes, as manifested by a lower realization of potential social welfare. However, this decline in social welfare is offset by a reduction in the distribution shift, narrowing the gap between predicted and realized system outcomes, which potentially enhances the perceived reliability and trustworthiness of the information display post hoc. Our findings pave the way for new research questions concerning the design of effective prediction interfaces in strategic environments.

In the framework of solid mechanics, the task of deriving material parameters from experimental data has recently re-emerged with the progress in full-field measurement capabilities and the renewed advances of machine learning. In this context, new methods such as the virtual fields method and physics-informed neural networks have been developed as alternatives to the already established least-squares and finite element-based approaches. Moreover, model discovery problems are starting to emerge and can also be addressed in a parameter estimation framework. These developments call for a new unified perspective, which is able to cover both traditional parameter estimation methods and novel approaches in which the state variables or the model structure itself are inferred as well. Adopting concepts discussed in the inverse problems community, we distinguish between all-at-once and reduced approaches. With this general framework, we are able to structure a large portion of the literature on parameter estimation in computational mechanics - and we can identify combinations that have not yet been addressed, two of which are proposed in this paper. We also discuss statistical approaches to quantify the uncertainty related to the estimated parameters, and we propose a novel two-step procedure for identification of complex material models based on both frequentist and Bayesian principles. Finally, we illustrate and compare several of the aforementioned methods with mechanical benchmarks based on synthetic and real data.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.

北京阿比特科技有限公司