Intelligent reflecting surfaces (IRSs) were introduced to enhance the performance of wireless communication systems. However, from a service provider's viewpoint, a concern with the use of an IRS is its effect on out-of-band (OOB) quality of service. Specifically, if two operators, say X and Y, provide services in a given geographical area using non-overlapping frequency bands, and if operator X uses an IRS to enhance the spectral efficiency (SE) of its users, does it degrade the performance of users served by operator Y? We answer this question by analyzing the average and instantaneous performances of the OOB operator considering both sub-6 GHz and mmWave bands, accounting for their corresponding channel characteristics. Specifically, we derive the ergodic sum-spectral efficiency achieved by the operators under round-robin scheduling. We also derive the outage probability and analyze the change in the SNR witnessed by an OOB user in the presence of the IRS using stochastic dominance theory. Surprisingly, even though the IRS is randomly configured from operator Y's point of view, the OOB operator still benefits from the presence of the IRS, witnessing a performance enhancement for free, in both sub-6 GHz and mmWave bands. This is because the IRS introduces additional paths between the transmitter and receiver, increasing the overall signal power arriving at the receiver and providing diversity benefits. We numerically illustrate our findings and conclude that an IRS is always beneficial to every operator, even when the IRS is deployed and controlled by only one operator to serve its own users.
Skill transfer from humans to robots is challenging. Presently, many researchers focus on capturing only position or joint angle data from humans to teach the robots. Even though this approach has yielded impressive results for grasping applications, reconstructing motion for object handling or fine manipulation from a human hand to a robot hand has been sparsely explored. Humans use tactile feedback to adjust their motion to various objects, but capturing and reproducing the applied forces is an open research question. In this paper we introduce a wearable fingertip tactile sensor, which captures the distributed 3-axis force vectors on the fingertip. The fingertip tactile sensor is interchangeable between the human hand and the robot hand, meaning that it can also be assembled to fit on a robot hand such as the Allegro hand. This paper presents the structural aspects of the sensor as well as the methodology and approach used to design, manufacture, and calibrate the sensor. The sensor is able to measure forces accurately with a mean absolute error of 0.21, 0.16, and 0.44 Newtons in X, Y, and Z directions, respectively.
In the field of robotics, robot teleoperation for remote or hazardous environments has become increasingly vital. A major challenge is the lag between command and action, negatively affecting operator awareness, performance, and mental strain. Even with advanced technology, mitigating these delays, especially in long-distance operations, remains challenging. Current solutions largely focus on machine-based adjustments. Yet, there's a gap in using human perceptions to improve the teleoperation experience. This paper presents a unique method of sensory manipulation to help humans adapt to such delays. Drawing from motor learning principles, it suggests that modifying sensory stimuli can lessen the perception of these delays. Instead of introducing new skills, the approach uses existing motor coordination knowledge. The aim is to minimize the need for extensive training or complex automation. A study with 41 participants explored the effects of altered haptic cues in delayed teleoperations. These cues were sourced from advanced physics engines and robot sensors. Results highlighted benefits like reduced task time and improved perceptions of visual delays. Real-time haptic feedback significantly contributed to reduced mental strain and increased confidence. This research emphasizes human adaptation as a key element in robot teleoperation, advocating for improved teleoperation efficiency via swift human adaptation, rather than solely optimizing robots for delay adjustment.
The study explores the capabilities of OpenAI's ChatGPT in solving different types of physics problems. ChatGPT (with GPT-4) was queried to solve a total of 40 problems from a college-level engineering physics course. These problems ranged from well-specified problems, where all data required for solving the problem was provided, to under-specified, real-world problems where not all necessary data were given. Our findings show that ChatGPT could successfully solve 62.5\% of the well-specified problems, but its accuracy drops to 8.3\% for under-specified problems. Analysis of the model's incorrect solutions revealed three distinct failure modes: 1) failure to construct accurate models of the physical world, 2) failure to make reasonable assumptions about missing data, and 3) calculation errors. The study offers implications for how to leverage LLM-augmented instructional materials to enhance STEM education. The insights also contribute to the broader discourse on AI's strengths and limitations, serving both educators aiming to leverage the technology and researchers investigating human-AI collaboration frameworks for problem-solving and decision-making.
We provide accurate approximations of the sum-rate capacity of an opportunistic time-sharing downlink, when a reconfigurable intelligent surface (RIS) assists the transmission from a single-antenna base station (BS) to single-antenna user equipments (UEs). We consider the fading effects of both the direct (i.e., BS-to-UEs) and reflection (i.e, BS-to-RIS-to-UEs) links, by developing two approximations: the former one is based on hardening of the reflection channel for large values of the number of meta-atoms; the latter one relies on the distribution of the sum of Nakagami variates and does not require channel hardening. Our derivations show the dependence of the sum-rate capacity as a function of both the number of users and the number of meta-atoms, as well as to establish a comparison with a downlink without an RIS. Numerical results corroborate the accuracy and validity of the mathematical analysis.
The field of visual computing is rapidly advancing due to the emergence of generative artificial intelligence (AI), which unlocks unprecedented capabilities for the generation, editing, and reconstruction of images, videos, and 3D scenes. In these domains, diffusion models are the generative AI architecture of choice. Within the last year alone, the literature on diffusion-based tools and applications has seen exponential growth and relevant papers are published across the computer graphics, computer vision, and AI communities with new works appearing daily on arXiv. This rapid growth of the field makes it difficult to keep up with all recent developments. The goal of this state-of-the-art report (STAR) is to introduce the basic mathematical concepts of diffusion models, implementation details and design choices of the popular Stable Diffusion model, as well as overview important aspects of these generative AI tools, including personalization, conditioning, inversion, among others. Moreover, we give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing, categorized by the type of generated medium, including 2D images, videos, 3D objects, locomotion, and 4D scenes. Finally, we discuss available datasets, metrics, open challenges, and social implications. This STAR provides an intuitive starting point to explore this exciting topic for researchers, artists, and practitioners alike.
Integrated sensing and communication (ISAC) has the advantages of efficient spectrum utilization and low hardware cost. It is promising to be implemented in the fifth-generation-advanced (5G-A) and sixth-generation (6G) mobile communication systems, having the potential to be applied in intelligent applications requiring both communication and high-accurate sensing capabilities. As the fundamental technology of ISAC, ISAC signal directly impacts the performance of sensing and communication. This article systematically reviews the literature on ISAC signals from the perspective of mobile communication systems, including ISAC signal design, ISAC signal processing algorithms and ISAC signal optimization. We first review the ISAC signal design based on 5G, 5G-A and 6G mobile communication systems. Then, radar signal processing methods are reviewed for ISAC signals, mainly including the channel information matrix method, spectrum lines estimator method and super resolution method. In terms of signal optimization, we summarize peak-to-average power ratio (PAPR) optimization, interference management, and adaptive signal optimization for ISAC signals. This article may provide the guidelines for the research of ISAC signals in 5G-A and 6G mobile communication systems.
Steganography is the art of hiding information in plain sight. This form of covert communication can be used by bad actors to propagate malware, exfiltrate victim data, and communicate with other bad actors. Current image steganography defenses rely upon steganalysis, or the detection of hidden messages. These methods, however, are non-blind as they require information about known steganography techniques and are easily bypassed. Recent work has instead focused on a defense mechanism known as sanitization, which eliminates hidden information from images. In this work, we introduce a novel blind deep learning steganography sanitization method that utilizes a diffusion model framework to sanitize universal and dependent steganography (DM-SUDS), which both sanitizes and preserves image quality. We evaluate this approach against state-of-the-art deep learning sanitization frameworks and provide further detailed analysis through an ablation study. DM-SUDS outperforms previous sanitization methods and improves image preservation MSE by 71.32%, PSNR by 22.43% and SSIM by 17.30%. This is the first blind deep learning image sanitization framework to meet these image quality results.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.