Vertical federated learning (VFL) enables multiple parties with disjoint features of a common user set to train a machine learning model without sharing their private data. Tree-based models have become prevalent in VFL due to their interpretability and efficiency. However, the vulnerability of tree-based VFL has not been sufficiently investigated. In this study, we first introduce a novel label inference attack, ID2Graph, which utilizes the sets of record-IDs assigned to each node (i.e., instance space) to deduce private training labels. The ID2Graph attack generates a graph structure from training samples, extracts communities from the graph, and clusters the local dataset using community information. To counteract label leakage from the instance space, we propose an effective defense mechanism, ID-LMID, which prevents label leakage by focusing on mutual information regularization. Comprehensive experiments conducted on various datasets reveal that the ID2Graph attack presents significant risks to tree-based models such as Random Forest and XGBoost. Further evaluations on these benchmarks demonstrate that ID-LMID effectively mitigates label leakage in such instances.
Generalized zero-shot learning(GZSL) aims to classify samples from seen and unseen labels, assuming unseen labels are not accessible during training. Recent advancements in GZSL have been expedited by incorporating contrastive-learning-based (instance-based) embedding in generative networks and leveraging the semantic relationship between data points. However, existing embedding architectures suffer from two limitations: (1) limited discriminability of synthetic features' embedding without considering fine-grained cluster structures; (2) inflexible optimization due to restricted scaling mechanisms on existing contrastive embedding networks, leading to overlapped representations in the embedding space. To enhance the quality of representations in the embedding space, as mentioned in (1), we propose a margin-based prototypical contrastive learning embedding network that reaps the benefits of prototype-data (cluster quality enhancement) and implicit data-data (fine-grained representations) interaction while providing substantial cluster supervision to the embedding network and the generator. To tackle (2), we propose an instance adaptive contrastive loss that leads to generalized representations for unseen labels with increased inter-class margin. Through comprehensive experimental evaluation, we show that our method can outperform the current state-of-the-art on three benchmark datasets. Our approach also consistently achieves the best unseen performance in the GZSL setting.
Hyperparameter optimization (HPO) is important to leverage the full potential of machine learning (ML). In practice, users are often interested in multi-objective (MO) problems, i.e., optimizing potentially conflicting objectives, like accuracy and energy consumption. To tackle this, the vast majority of MO-ML algorithms return a Pareto front of non-dominated machine learning models to the user. Optimizing the hyperparameters of such algorithms is non-trivial as evaluating a hyperparameter configuration entails evaluating the quality of the resulting Pareto front. In literature, there are known indicators that assess the quality of a Pareto front (e.g., hypervolume, R2) by quantifying different properties (e.g., volume, proximity to a reference point). However, choosing the indicator that leads to the desired Pareto front might be a hard task for a user. In this paper, we propose a human-centered interactive HPO approach tailored towards multi-objective ML leveraging preference learning to extract desiderata from users that guide the optimization. Instead of relying on the user guessing the most suitable indicator for their needs, our approach automatically learns an appropriate indicator. Concretely, we leverage pairwise comparisons of distinct Pareto fronts to learn such an appropriate quality indicator. Then, we optimize the hyperparameters of the underlying MO-ML algorithm towards this learned indicator using a state-of-the-art HPO approach. In an experimental study targeting the environmental impact of ML, we demonstrate that our approach leads to substantially better Pareto fronts compared to optimizing based on a wrong indicator pre-selected by the user, and performs comparable in the case of an advanced user knowing which indicator to pick.
Continuous unsupervised representation learning (CURL) research has greatly benefited from improvements in self-supervised learning (SSL) techniques. As a result, existing CURL methods using SSL can learn high-quality representations without any labels, but with a notable performance drop when learning on a many-tasks data stream. We hypothesize that this is caused by the regularization losses that are imposed to prevent forgetting, leading to a suboptimal plasticity-stability trade-off: they either do not adapt fully to the incoming data (low plasticity), or incur significant forgetting when allowed to fully adapt to a new SSL pretext-task (low stability). In this work, we propose to train an expert network that is relieved of the duty of keeping the previous knowledge and can focus on performing optimally on the new tasks (optimizing plasticity). In the second phase, we combine this new knowledge with the previous network in an adaptation-retrospection phase to avoid forgetting and initialize a new expert with the knowledge of the old network. We perform several experiments showing that our proposed approach outperforms other CURL exemplar-free methods in few- and many-task split settings. Furthermore, we show how to adapt our approach to semi-supervised continual learning (Semi-SCL) and show that we surpass the accuracy of other exemplar-free Semi-SCL methods and reach the results of some others that use exemplars.
Deep reinforcement learning (DRL) has proven extremely useful in a large variety of application domains. However, even successful DRL-based software can exhibit highly undesirable behavior. This is due to DRL training being based on maximizing a reward function, which typically captures general trends but cannot precisely capture, or rule out, certain behaviors of the system. In this paper, we propose a novel framework aimed at drastically reducing the undesirable behavior of DRL-based software, while maintaining its excellent performance. In addition, our framework can assist in providing engineers with a comprehensible characterization of such undesirable behavior. Under the hood, our approach is based on extracting decision tree classifiers from erroneous state-action pairs, and then integrating these trees into the DRL training loop, penalizing the system whenever it performs an error. We provide a proof-of-concept implementation of our approach, and use it to evaluate the technique on three significant case studies. We find that our approach can extend existing frameworks in a straightforward manner, and incurs only a slight overhead in training time. Further, it incurs only a very slight hit to performance, or even in some cases - improves it, while significantly reducing the frequency of undesirable behavior.
Continual learning is a challenging problem in which models need to be trained on non-stationary data across sequential tasks for class-incremental learning. While previous methods have focused on using either regularization or rehearsal-based frameworks to alleviate catastrophic forgetting in image classification, they are limited to a single modality and cannot learn compact class-aware cross-modal representations for continual audio-visual learning. To address this gap, we propose a novel class-incremental grouping network (CIGN) that can learn category-wise semantic features to achieve continual audio-visual learning. Our CIGN leverages learnable audio-visual class tokens and audio-visual grouping to continually aggregate class-aware features. Additionally, it utilizes class tokens distillation and continual grouping to prevent forgetting parameters learned from previous tasks, thereby improving the model's ability to capture discriminative audio-visual categories. We conduct extensive experiments on VGGSound-Instruments, VGGSound-100, and VGG-Sound Sources benchmarks. Our experimental results demonstrate that the CIGN achieves state-of-the-art audio-visual class-incremental learning performance. Code is available at //github.com/stoneMo/CIGN.
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources. Yet, FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks. Preventing backdoors proves especially challenging due to their stealthy nature. Prominent mitigation techniques against poisoning attacks rely on monitoring certain metrics and filtering malicious model updates. While shown effective in evaluations, we argue that previous works didn't consider realistic real-world adversaries and data distributions. We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously. Through extensive empirical tests, we show that existing defense methods can be easily circumvented in this adversary model. We also demonstrate, that existing defenses have limited effectiveness when no assumptions are made about underlying data distributions. We introduce Metric-Cascades (MESAS), a novel defense method for more realistic scenarios and adversary models. MESAS employs multiple detection metrics simultaneously to identify poisoned model updates, creating a complex multi-objective optimization problem for adaptive attackers. In our extensive evaluation featuring nine backdoors and three datasets, MESAS consistently detects even strong adaptive attackers. Furthermore, MESAS outperforms existing defenses in distinguishing backdoors from data distribution-related distortions within and across clients. MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
Self-supervised learning (SSL) using mixed images has been studied to learn various image representations. Existing methods using mixed images learn a representation by maximizing the similarity between the representation of the mixed image and the synthesized representation of the original images. However, few methods consider the synthesis of representations from the perspective of mathematical logic. In this study, we focused on a synthesis method of representations. We proposed a new SSL with mixed images and a new representation format based on many-valued logic. This format can indicate the feature-possession degree, that is, how much of each image feature is possessed by a representation. This representation format and representation synthesis by logic operation realize that the synthesized representation preserves the remarkable characteristics of the original representations. Our method performed competitively with previous representation synthesis methods for image classification tasks. We also examined the relationship between the feature-possession degree and the number of classes of images in the multilabel image classification dataset to verify that the intended learning was achieved. In addition, we discussed image retrieval, which is an application of our proposed representation format using many-valued logic.
Machine learning (ML) techniques have been proposed to automatically select the best solver from a portfolio of solvers, based on predicted performance. These techniques have been applied to various problems, such as Boolean Satisfiability, Traveling Salesperson, Graph Coloring, and others. These methods, known as meta-solvers, take an instance of a problem and a portfolio of solvers as input. They then predict the best-performing solver and execute it to deliver a solution. Typically, the quality of the solution improves with a longer computational time. This has led to the development of anytime selectors, which consider both the instance and a user-prescribed computational time limit. Anytime meta-solvers predict the best-performing solver within the specified time limit. Constructing an anytime meta-solver is considerably more challenging than building a meta-solver without the "anytime" feature. In this study, we focus on the task of designing anytime meta-solvers for the NP-hard optimization problem of Pseudo-Boolean Optimization (PBO), which generalizes Satisfiability and Maximum Satisfiability problems. The effectiveness of our approach is demonstrated via extensive empirical study in which our anytime meta-solver improves dramatically on the performance of Mixed Integer Programming solver Gurobi, which is the best-performing single solver in the portfolio. For example, out of all instances and time limits for which Gurobi failed to find feasible solutions, our meta-solver identified feasible solutions for 47% of these.
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.