亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While deep neural networks have achieved great success on the graph analysis, recent works have shown that they are also vulnerable to adversarial attacks where fraudulent users can fool the model with a limited number of queries. Compared with adversarial attacks on image classification, performing adversarial attack on graphs is challenging because of the discrete and non-differential nature of a graph. To address these issues, we proposed Cluster Attack, a novel adversarial attack by introducing a set of fake nodes to the original graph which can mislead the classification on certain victim nodes. Specifically, we query the victim model for each victim node to acquire their most adversarial feature, which is related to how the fake node's feature will affect the victim nodes. We further cluster the victim nodes into several subgroups according to their most adversarial features such that we can reduce the searching space. Moreover, our attack is performed in a practical and unnoticeable manner: (1) We protect the predicted labels of nodes which we are not aimed for from being changed during attack. (2) We attack by introducing fake nodes into the original graph without changing existing links and features. (3) We attack with only partial information about the attacked graph, i.e., by leveraging the information of victim nodes along with their neighbors within $k$-hop instead of the whole graph. (4) We perform attack with a limited number of queries about the predicted scores of the model in a black-box manner, i.e., without model architecture and parameters. Extensive experiments demonstrate the effectiveness of our method in terms of the success rate of attack.

相關內容

Bayesian Neural Networks (BNNs), unlike Traditional Neural Networks (TNNs) are robust and adept at handling adversarial attacks by incorporating randomness. This randomness improves the estimation of uncertainty, a feature lacking in TNNs. Thus, we investigate the robustness of BNNs to white-box attacks using multiple Bayesian neural architectures. Furthermore, we create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture, and BDAV, by combining this intervention with adversarial training. Experiments are conducted on the CIFAR-10 and FGVC-Aircraft datasets. We attack our models with strong white-box attacks ($l_\infty$-FGSM, $l_\infty$-PGD, $l_2$-PGD, EOT $l_\infty$-FGSM, and EOT $l_\infty$-PGD). In all experiments, at least one BNN outperforms traditional neural networks during adversarial attack scenarios. An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments, and often by significant margins. Lastly, we investigate network calibration and find that BNNs do not make overconfident predictions, providing evidence that BNNs are also better at measuring uncertainty.

Machine learning has witnessed tremendous growth in its adoption and advancement in the last decade. The evolution of machine learning from traditional algorithms to modern deep learning architectures has shaped the way today's technology functions. Its unprecedented ability to discover knowledge/patterns from unstructured data and automate the decision-making process led to its application in wide domains. High flying machine learning arena has been recently pegged back by the introduction of adversarial attacks. Adversaries are able to modify data, maximizing the classification error of the models. The discovery of blind spots in machine learning models has been exploited by adversarial attackers by generating subtle intentional perturbations in test samples. Increasing dependency on data has paved the blueprint for ever-high incentives to camouflage machine learning models. To cope with probable catastrophic consequences in the future, continuous research is required to find vulnerabilities in form of adversarial and design remedies in systems. This survey aims at providing the encyclopedic introduction to adversarial attacks that are carried out against malware detection systems. The paper will introduce various machine learning techniques used to generate adversarial and explain the structure of target files. The survey will also model the threat posed by the adversary and followed by brief descriptions of widely accepted adversarial algorithms. Work will provide a taxonomy of adversarial evasion attacks on the basis of attack domain and adversarial generation techniques. Adversarial evasion attacks carried out against malware detectors will be discussed briefly under each taxonomical headings and compared with concomitant researches. Analyzing the current research challenges in an adversarial generation, the survey will conclude by pinpointing the open future research directions.

Graph neural networks, a popular class of models effective in a wide range of graph-based learning tasks, have been shown to be vulnerable to adversarial attacks. While the majority of the literature focuses on such vulnerability in node-level classification tasks, little effort has been dedicated to analysing adversarial attacks on graph-level classification, an important problem with numerous real-life applications such as biochemistry and social network analysis. The few existing methods often require unrealistic setups, such as access to internal information of the victim models, or an impractically-large number of queries. We present a novel Bayesian optimisation-based attack method for graph classification models. Our method is black-box, query-efficient and parsimonious with respect to the perturbation applied. We empirically validate the effectiveness and flexibility of the proposed method on a wide range of graph classification tasks involving varying graph properties, constraints and modes of attack. Finally, we analyse common interpretable patterns behind the adversarial samples produced, which may shed further light on the adversarial robustness of graph classification models.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

There has been an ongoing cycle where stronger defenses against adversarial attacks are subsequently broken by a more advanced defense-aware attack. We present a new approach towards ending this cycle where we "deflect'' adversarial attacks by causing the attacker to produce an input that semantically resembles the attack's target class. To this end, we first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance on both standard and defense-aware attacks. We then show that undetected attacks against our defense often perceptually resemble the adversarial target class by performing a human study where participants are asked to label images produced by the attack. These attack images can no longer be called "adversarial'' because our network classifies them the same way as humans do.

It is not until recently that graph neural networks (GNNs) are adopted to perform graph representation learning, among which, those based on the aggregation of features within the neighborhood of a node achieved great success. However, despite such achievements, GNNs illustrate defects in identifying some common structural patterns which, unfortunately, play significant roles in various network phenomena. In this paper, we propose GraLSP, a GNN framework which explicitly incorporates local structural patterns into the neighborhood aggregation through random anonymous walks. Specifically, we capture local graph structures via random anonymous walks, powerful and flexible tools that represent structural patterns. The walks are then fed into the feature aggregation, where we design various mechanisms to address the impact of structural features, including adaptive receptive radius, attention and amplification. In addition, we design objectives that capture similarities between structures and are optimized jointly with node proximity objectives. With the adequate leverage of structural patterns, our model is able to outperform competitive counterparts in various prediction tasks in multiple datasets.

Graph neural networks (GNNs) are widely used in many applications. However, their robustness against adversarial attacks is criticized. Prior studies show that using unnoticeable modifications on graph topology or nodal features can significantly reduce the performances of GNNs. It is very challenging to design robust graph neural networks against poisoning attack and several efforts have been taken. Existing work aims at reducing the negative impact from adversarial edges only with the poisoned graph, which is sub-optimal since they fail to discriminate adversarial edges from normal ones. On the other hand, clean graphs from similar domains as the target poisoned graph are usually available in the real world. By perturbing these clean graphs, we create supervised knowledge to train the ability to detect adversarial edges so that the robustness of GNNs is elevated. However, such potential for clean graphs is neglected by existing work. To this end, we investigate a novel problem of improving the robustness of GNNs against poisoning attacks by exploring clean graphs. Specifically, we propose PA-GNN, which relies on a penalized aggregation mechanism that directly restrict the negative impact of adversarial edges by assigning them lower attention coefficients. To optimize PA-GNN for a poisoned graph, we design a meta-optimization algorithm that trains PA-GNN to penalize perturbations using clean graphs and their adversarial counterparts, and transfers such ability to improve the robustness of PA-GNN on the poisoned graph. Experimental results on four real-world datasets demonstrate the robustness of PA-GNN against poisoning attacks on graphs.

Unsupervised node embedding methods (e.g., DeepWalk, LINE, and node2vec) have attracted growing interests given their simplicity and effectiveness. However, although these methods have been proved effective in a variety of applications, none of the existing work has analyzed the robustness of them. This could be very risky if these methods are attacked by an adversarial party. In this paper, we take the task of link prediction as an example, which is one of the most fundamental problems for graph analysis, and introduce a data positioning attack to node embedding methods. We give a complete characterization of attacker's utilities and present efficient solutions to adversarial attacks for two popular node embedding methods: DeepWalk and LINE. We evaluate our proposed attack model on multiple real-world graphs. Experimental results show that our proposed model can significantly affect the results of link prediction by slightly changing the graph structures (e.g., adding or removing a few edges). We also show that our proposed model is very general and can be transferable across different embedding methods. Finally, we conduct a case study on a coauthor network to better understand our attack method.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司