An intelligent driving system should be capable of dynamically formulating appropriate driving strategies based on the current environment and vehicle status, while ensuring the security and reliability of the system. However, existing methods based on reinforcement learning and imitation learning suffer from low safety, poor generalization, and inefficient sampling. Additionally, they cannot accurately predict future driving trajectories, and the accurate prediction of future driving trajectories is a precondition for making optimal decisions. To solve these problems, in this paper, we introduce a Safe and Generalized end-to-end Autonomous Driving System (SGADS) for complex and various scenarios. Our SGADS incorporates variational inference with normalizing flows, enabling the intelligent vehicle to accurately predict future driving trajectories. Moreover, we propose the formulation of robust safety constraints. Furthermore, we combine reinforcement learning with demonstrations to augment search process of the agent. The experimental results demonstrate that our SGADS can significantly improve safety performance, exhibit strong generalization, and enhance the training efficiency of intelligent vehicles in complex urban scenarios compared to existing methods.
Dynamic graph neural networks (DyGNNs) have demonstrated powerful predictive abilities by exploiting graph structural and temporal dynamics. However, the existing DyGNNs fail to handle distribution shifts, which naturally exist in dynamic graphs, mainly because the patterns exploited by DyGNNs may be variant with respect to labels under distribution shifts. In this paper, we propose Disentangled Intervention-based Dynamic graph Attention networks with Invariance Promotion (I-DIDA) to handle spatio-temporal distribution shifts in dynamic graphs by discovering and utilizing invariant patterns, i.e., structures and features whose predictive abilities are stable across distribution shifts. Specifically, we first propose a disentangled spatio-temporal attention network to capture the variant and invariant patterns. By utilizing the disentangled patterns, we design a spatio-temporal intervention mechanism to create multiple interventional distributions and an environment inference module to infer the latent spatio-temporal environments, and minimize the variance of predictions among these intervened distributions and environments, so that our model can make predictions based on invariant patterns with stable predictive abilities under distribution shifts. Extensive experiments demonstrate the superiority of our method over state-of-the-art baselines under distribution shifts. Our work is the first study of spatio-temporal distribution shifts in dynamic graphs, to the best of our knowledge.
Public transportation systems often suffer from unexpected fluctuations in demand and disruptions, such as mechanical failures and medical emergencies. These fluctuations and disruptions lead to delays and overcrowding, which are detrimental to the passengers' experience and to the overall performance of the transit service. To proactively mitigate such events, many transit agencies station substitute (reserve) vehicles throughout their service areas, which they can dispatch to augment or replace vehicles on routes that suffer overcrowding or disruption. However, determining the optimal locations where substitute vehicles should be stationed is a challenging problem due to the inherent randomness of disruptions and due to the combinatorial nature of selecting locations across a city. In collaboration with the transit agency of Nashville, TN, we address this problem by introducing data-driven statistical and machine-learning models for forecasting disruptions and an effective randomized local-search algorithm for selecting locations where substitute vehicles are to be stationed. Our research demonstrates promising results in proactive disruption management, offering a practical and easily implementable solution for transit agencies to enhance the reliability of their services. Our results resonate beyond mere operational efficiency: by advancing proactive strategies, our approach fosters more resilient and accessible public transportation, contributing to equitable urban mobility and ultimately benefiting the communities that rely on public transportation the most.
We propose an autonomous exploration algorithm designed for decentralized multi-robot teams, which takes into account map and localization uncertainties of range-sensing mobile robots. Virtual landmarks are used to quantify the combined impact of process noise and sensor noise on map uncertainty. Additionally, we employ an iterative expectation-maximization inspired algorithm to assess the potential outcomes of both a local robot's and its neighbors' next-step actions. To evaluate the effectiveness of our framework, we conduct a comparative analysis with state-of-the-art algorithms. The results of our experiments show the proposed algorithm's capacity to strike a balance between curbing map uncertainty and achieving efficient task allocation among robots.
Deep reinforcement learning algorithms are usually impeded by sampling inefficiency, heavily depending on multiple interactions with the environment to acquire accurate decision-making capabilities. In contrast, humans rely on their hippocampus to retrieve relevant information from past experiences of relevant tasks, which guides their decision-making when learning a new task, rather than exclusively depending on environmental interactions. Nevertheless, designing a hippocampus-like module for an agent to incorporate past experiences into established reinforcement learning algorithms presents two challenges. The first challenge involves selecting the most relevant past experiences for the current task, and the second challenge is integrating such experiences into the decision network. To address these challenges, we propose a novel method that utilizes a retrieval network based on task-conditioned hypernetwork, which adapts the retrieval network's parameters depending on the task. At the same time, a dynamic modification mechanism enhances the collaborative efforts between the retrieval and decision networks. We evaluate the proposed method across various tasks within a multitask scenario in the Minigrid environment. The experimental results demonstrate that our proposed method significantly outperforms strong baselines.
Quantum density matrix represents all the information of the entire quantum system, and novel models of meaning employing density matrices naturally model linguistic phenomena such as hyponymy and linguistic ambiguity, among others in quantum question answering tasks. Naturally, we argue that applying the quantum density matrix into classical Question Answering (QA) tasks can show more effective performance. Specifically, we (i) design a new mechanism based on Long Short-Term Memory (LSTM) to accommodate the case when the inputs are matrixes; (ii) apply the new mechanism to QA problems with Convolutional Neural Network (CNN) and gain the LSTM-based QA model with the quantum density matrix. Experiments of our new model on TREC-QA and WIKI-QA data sets show encouraging results. Similarly, we argue that the quantum density matrix can also enhance the image feature information and the relationship between the features for the classical image classification. Thus, we (i) combine density matrices and CNN to design a new mechanism; (ii) apply the new mechanism to some representative classical image classification tasks. A series of experiments show that the application of quantum density matrix in image classification has the generalization and high efficiency on different datasets. The application of quantum density matrix both in classical question answering tasks and classical image classification tasks show more effective performance.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.