In this article, we investigate the distributed privacy preserving weighted consensus control problem for linear continuous-time multi-agent systems under the event-triggering communication mode. A novel event-triggered privacy preserving consensus scheme is proposed, which can be divided into three phases. First, for each agent, an event-triggered mechanism is designed to determine whether the current state is transmitted to the corresponding neighbor agents, which avoids the frequent real-time communication. Then, to protect the privacy of initial states from disclosure, the edge-based mutually independent standard white noise is added to each communication channel. Further, to attenuate the effect of noise on consensus control, we propose a stochastic approximation type protocol for each agent. By using the tools of stochastic analysis and graph theory, the asymptotic property and convergence accuracy of consensus error is analyzed. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed scheme.
Robust feature selection is vital for creating reliable and interpretable Machine Learning (ML) models. When designing statistical prediction models in cases where domain knowledge is limited and underlying interactions are unknown, choosing the optimal set of features is often difficult. To mitigate this issue, we introduce a Multidata (M) causal feature selection approach that simultaneously processes an ensemble of time series datasets and produces a single set of causal drivers. This approach uses the causal discovery algorithms PC1 or PCMCI that are implemented in the Tigramite Python package. These algorithms utilize conditional independence tests to infer parts of the causal graph. Our causal feature selection approach filters out causally-spurious links before passing the remaining causal features as inputs to ML models (Multiple linear regression, Random Forest) that predict the targets. We apply our framework to the statistical intensity prediction of Western Pacific Tropical Cyclones (TC), for which it is often difficult to accurately choose drivers and their dimensionality reduction (time lags, vertical levels, and area-averaging). Using more stringent significance thresholds in the conditional independence tests helps eliminate spurious causal relationships, thus helping the ML model generalize better to unseen TC cases. M-PC1 with a reduced number of features outperforms M-PCMCI, non-causal ML, and other feature selection methods (lagged correlation, random), even slightly outperforming feature selection based on eXplainable Artificial Intelligence. The optimal causal drivers obtained from our causal feature selection help improve our understanding of underlying relationships and suggest new potential drivers of TC intensification.
In decentralized settings, the shuffle model of differential privacy has emerged as a promising alternative to the classical local model. Analyzing privacy amplification via shuffling is a critical component in both single-message and multi-message shuffle protocols. However, current methods used in these two areas are distinct and specific, making them less convenient for protocol designers and practitioners. In this work, we introduce variation-ratio reduction as a unified framework for privacy amplification analyses in the shuffle model. This framework utilizes total variation bounds of local messages and probability ratio bounds of other users' blanket messages, converting them to indistinguishable levels. Our results indicate that the framework yields tighter bounds for both single-message and multi-message encoders (e.g., with local DP, local metric DP, or multi-message randomizers). Specifically, for a broad range of local randomizers having extremal probability design, our amplification bounds are precisely tight. We also demonstrate that variation-ratio reduction is well-suited for parallel composition in the shuffle model and results in stricter privacy accounting for common sampling-based local randomizers. Our experimental findings show that, compared to existing amplification bounds, our numerical amplification bounds can save up to $30\%$ of the budget for single-message protocols, $75\%$ of the budget for multi-message protocols, and $75\%$-$95\%$ of the budget for parallel composition. Additionally, our implementation for numerical amplification bounds has only $\tilde{O}(n)$ complexity and is highly efficient in practice, taking just $2$ minutes for $n=10^8$ users. The code for our implementation can be found at \url{//github.com/wangsw/PrivacyAmplification}.
Gun violence is a major problem in contemporary American society, with tens of thousands injured each year. However, relatively little is known about the effects on family members and how effects vary across subpopulations. To study these questions and, more generally, to address a gap in the causal inference literature, we present a framework for the study of effect modification or heterogeneous treatment effects in difference-in-differences designs. We implement a new matching technique, which combines profile matching and risk set matching, to (i) preserve the time alignment of covariates, exposure, and outcomes, avoiding pitfalls of other common approaches for difference-in-differences, and (ii) explicitly control biases due to imbalances in observed covariates in subgroups discovered from the data. Our case study shows significant and persistent effects of nonfatal firearm injuries on several health outcomes for those injured and on the mental health of their family members. Sensitivity analyses reveal that these results are moderately robust to unmeasured confounding bias. Finally, while the effects for those injured are modified largely by the severity of the injury and its documented intent, for families, effects are strongest for those whose relative's injury is documented as resulting from an assault, self-harm, or law enforcement intervention.
Blockchain systems run consensus rules as code to agree on the state of the distributed ledger and secure the network. Changing these rules can be risky and challenging. In addition, it can often be controversial and take much effort to make all the necessary participants agree to adopt a change. Arguably, Bitcoin has seen centralisation tendencies in pools and in development. However, how these tendencies influence blockchain governance has received minimal community and academic attention. Our study analyses the governmental structures in a blockchain by looking into the history of Bitcoin. We investigate the process of changing consensus rules through a grounded theory analysis comprising quantitative and qualitative data from 34 consensus forks in Bitcoin and Bitcoin Cash. The results reveal the decentralised behaviour in Bitcoin and blockchain. Our results are in contrast to related work, emphasising centralisation among miners and developers. Furthermore, our results show how the consensus-driven deployment techniques and governance of consensus rules are intertwined.
This paper is the first to attempt differentially private (DP) topological data analysis (TDA), producing near-optimal private persistence diagrams. We analyze the sensitivity of persistence diagrams in terms of the bottleneck distance, and we show that the commonly used \v{C}ech complex has sensitivity that does not decrease as the sample size $n$ increases. This makes it challenging for the persistence diagrams of \v{C}ech complexes to be privatized. As an alternative, we show that the persistence diagram obtained by the $L^1$-distance to measure (DTM) has sensitivity $O(1/n)$. Based on the sensitivity analysis, we propose using the exponential mechanism whose utility function is defined in terms of the bottleneck distance of the $L^1$-DTM persistence diagrams. We also derive upper and lower bounds of the accuracy of our privacy mechanism; the obtained bounds indicate that the privacy error of our mechanism is near-optimal. We demonstrate the performance of our privatized persistence diagrams through simulations as well as on a real dataset tracking human movement.
Real-world fact verification task aims to verify the factuality of a claim by retrieving evidence from the source document. The quality of the retrieved evidence plays an important role in claim verification. Ideally, the retrieved evidence should be faithful (reflecting the model's decision-making process in claim verification) and plausible (convincing to humans), and can improve the accuracy of verification task. Although existing approaches leverage the similarity measure of semantic or surface form between claims and documents to retrieve evidence, they all rely on certain heuristics that prevent them from satisfying all three requirements. In light of this, we propose a fact verification model named ReRead to retrieve evidence and verify claim that: (1) Train the evidence retriever to obtain interpretable evidence (i.e., faithfulness and plausibility criteria); (2) Train the claim verifier to revisit the evidence retrieved by the optimized evidence retriever to improve the accuracy. The proposed system is able to achieve significant improvements upon best-reported models under different settings.
Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.