Repeatedly solving the parameterized optimal mass transport (pOMT) problem is a frequent task in applications such as image registration and adaptive grid generation. It is thus critical to develop a highly efficient reduced solver that is equally accurate as the full order model. In this paper, we propose such a machine learning-like method for pOMT by adapting a new reduced basis (RB) technique specifically designed for nonlinear equations, the reduced residual reduced over-collocation (R2-ROC) approach, to the parameterized Monge-Amp$\grave{\rm e}$re equation. It builds on top of a narrow-stencil finite different method (FDM), a so-called truth solver, which we propose in this paper for the Monge-Amp$\grave{\rm e}$re equation with a transport boundary. Together with the R2-ROC approach, it allows us to handle the strong and unique nonlinearity pertaining to the Monge-Amp$\grave{\rm e}$re equation achieving online efficiency without resorting to any direct approximation of the nonlinearity. Several challenging numerical tests demonstrate the accuracy and high efficiency of our method for solving the Monge-Amp$\grave{\rm e}$re equation with various parametric boundary conditions.
To speed-up the solution to parametrized differential problems, reduced order models (ROMs) have been developed over the years, including projection-based ROMs such as the reduced-basis (RB) method, deep learning-based ROMs, as well as surrogate models obtained via a machine learning approach. Thanks to its physics-based structure, ensured by the use of a Galerkin projection of the full order model (FOM) onto a linear low-dimensional subspace, RB methods yield approximations that fulfill the physical problem at hand. However, to make the assembling of a ROM independent of the FOM dimension, intrusive and expensive hyper-reduction stages are usually required, such as the discrete empirical interpolation method (DEIM), thus making this strategy less feasible for problems characterized by (high-order polynomial or nonpolynomial) nonlinearities. To overcome this bottleneck, we propose a novel strategy for learning nonlinear ROM operators using deep neural networks (DNNs). The resulting hyper-reduced order model enhanced by deep neural networks, to which we refer to as Deep-HyROMnet, is then a physics-based model, still relying on the RB method approach, however employing a DNN architecture to approximate reduced residual vectors and Jacobian matrices once a Galerkin projection has been performed. Numerical results dealing with fast simulations in nonlinear structural mechanics show that Deep-HyROMnets are orders of magnitude faster than POD-Galerkin-DEIM ROMs, keeping the same level of accuracy.
This paper presents a new derivation method of converse bounds on the non-asymptotic achievable rate of discrete weakly symmetric memoryless channels. It is based on the finite blocklength statistics of the channel, where with the use of an auxiliary channel the converse bound is produced. This method is general and initially is presented for an arbitrary weakly symmetric channel. Afterwards, the main result is specialized for the $q$-ary erasure channel (QEC), binary symmetric channel (BSC), and QEC with stop feedback. Numerical evaluations show identical or comparable bounds to the state-of-the-art in the cases of QEC and BSC, and a tighter bound for the QEC with stop feedback.
In this chapter, we discuss recent work on learning sparse approximations to high-dimensional functions on data, where the target functions may be scalar-, vector- or even Hilbert space-valued. Our main objective is to study how the sampling strategy affects the sample complexity -- that is, the number of samples that suffice for accurate and stable recovery -- and to use this insight to obtain optimal or near-optimal sampling procedures. We consider two settings. First, when a target sparse representation is known, in which case we present a near-complete answer based on drawing independent random samples from carefully-designed probability measures. Second, we consider the more challenging scenario when such representation is unknown. In this case, while not giving a full answer, we describe a general construction of sampling measures that improves over standard Monte Carlo sampling. We present examples using algebraic and trigonometric polynomials, and for the former, we also introduce a new procedure for function approximation on irregular (i.e., nontensorial) domains. The effectiveness of this procedure is shown through numerical examples. Finally, we discuss a number of structured sparsity models, and how they may lead to better approximations.
The aim of this work is to provide the first strong convergence result of numerical approximation of a general time-fractional second order stochastic partial differential equation involving a Caputo derivative in time of order $\alpha\in(\frac 12; 1)$ and driven simultaneously by a multiplicative standard Brownian motion and additive fBm with Hurst parameter $H\in(\frac 12, 1)$, more realistic to model the random effects on transport of particles in medium with thermal memory. We prove the existence and uniqueness results and perform the spatial discretization using the finite element and the temporal discretization using a fractional exponential integrator scheme. We provide the temporal and spatial convergence proofs for our fully discrete scheme and the result shows that the convergence orders depend on the regularity of the initial data, the power of the fractional derivative, and the Hurst parameter $H$.
In this paper, we propose new geometrically unfitted space-time Finite Element methods for partial differential equations posed on moving domains of higher order accuracy in space and time. As a model problem, the convection-diffusion problem on a moving domain is studied. For geometrically higher order accuracy, we apply a parametric mapping on a background space-time tensor-product mesh. Concerning discretisation in time, we consider discontinuous Galerkin, as well as related continuous (Petrov-)Galerkin and Galerkin collocation methods. For stabilisation with respect to bad cut configurations and as an extension mechanism that is required for the latter two schemes, a ghost penalty stabilisation is employed. The article puts an emphasis on the techniques that allow to achieve a robust but higher order geometry handling for smooth domains. We investigate the computational properties of the respective methods in a series of numerical experiments. These include studies in different dimensions for different polynomial degrees in space and time, validating the higher order accuracy in both variables.
This paper studies the caching system of multiple cache-enabled users with random demands. Under nonuniform file popularity, we thoroughly characterize the optimal uncoded cache placement structure for the coded caching scheme (CCS). Formulating the cache placement as an optimization problem to minimize the average delivery rate, we identify the file group structure in the optimal solution. We show that, regardless of the file popularity distribution, there are \emph{at most three file groups} in the optimal cache placement{, where files within a group have the same cache placement}. We further characterize the complete structure of the optimal cache placement and obtain the closed-form solution in each of the three file group structures. A simple algorithm is developed to obtain the final optimal cache placement by comparing a set of candidate closed-form solutions computed in parallel. We provide insight into the file groups formed by the optimal cache placement. The optimal placement solution also indicates that coding between file groups may be explored during delivery, in contrast to the existing suboptimal file grouping schemes. Using the file group structure in the optimal cache placement for the CCS, we propose a new information-theoretic converse bound for coded caching that is tighter than the existing best one. Moreover, we characterize the file subpacketization in the CCS with the optimal cache placement solution and show that the maximum subpacketization level in the worst case scales as $\mathcal{O}(2^K/\sqrt{K})$ for $K$ users.
We introduce a novel approach to waveform inversion, based on a data driven reduced order model (ROM) of the wave operator. The presentation is for the acoustic wave equation, but the approach can be extended to elastic or electromagnetic waves. The data are time resolved measurements of the pressure wave at the sensors in an active array, which probe the unknown medium with pulses and measure the generated waves. The ROM depends nonlinearly on the data but it can be constructed from them using numerical linear algebra methods. We show that the ROM can be used for the inverse problem of velocity estimation. While the full-waveform inversion approach of {nonlinear least-squares} data fitting is challenging without low frequency information, due to multiple minima of the objective function, the minimization of the ROM misfit function has a better behavior, even for a poor initial guess. In fact, the ROM misfit function is demonstrably a convex function for low-dimensional parametrizations of the unknown velocity. We give the construction of the ROM, introduce the inversion approach based on the ROM misfit and assess its performance with numerical simulations.
Adaptive spectral (AS) decompositions associated with a piecewise constant function $u$ yield small subspaces where the characteristic functions comprising $u$ are well approximated. When combined with Newton-like optimization methods for the solution of inverse medium problems, AS decompositions have proved remarkably efficient in providing at each nonlinear iteration a low-dimensional search space. Here, we derive $L^2$-error estimates for the AS decomposition of $u$, truncated after $K$ terms, when $u$ is piecewise constant and consists of $K$ characteristic functions over Lipschitz domains and a background. Our estimates apply both to the continuous and the discrete Galerkin finite element setting. Numerical examples illustrate the accuracy of the AS decomposition for media that either do, or do not, satisfy the assumptions of the theory.
Imitation learning enables agents to reuse and adapt the hard-won expertise of others, offering a solution to several key challenges in learning behavior. Although it is easy to observe behavior in the real-world, the underlying actions may not be accessible. We present a new method for imitation solely from observations that achieves comparable performance to experts on challenging continuous control tasks while also exhibiting robustness in the presence of observations unrelated to the task. Our method, which we call FORM (for "Future Observation Reward Model") is derived from an inverse RL objective and imitates using a model of expert behavior learned by generative modelling of the expert's observations, without needing ground truth actions. We show that FORM performs comparably to a strong baseline IRL method (GAIL) on the DeepMind Control Suite benchmark, while outperforming GAIL in the presence of task-irrelevant features.
This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.