Generative pre-trained Transformer (GPT) has demonstrates its great success in natural language processing and related techniques have been adapted into molecular modeling. Considering that text is the most important record for scientific discovery, in this paper, we propose MolXPT, a unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text. Briefly, we detect the molecule names in each sequence and replace them to the corresponding SMILES. In this way, the SMILES could leverage the information from surrounding text, and vice versa. The above wrapped sequences, text sequences from PubMed and SMILES sequences from PubChem are all fed into a language model for pre-training. Experimental results demonstrate that MolXPT outperforms strong baselines of molecular property prediction on MoleculeNet, performs comparably to the best model in text-molecule translation while using less than half of its parameters, and enables zero-shot molecular generation without finetuning.
The growth of pending legal cases in populous countries, such as India, has become a major issue. Developing effective techniques to process and understand legal documents is extremely useful in resolving this problem. In this paper, we present our systems for SemEval-2023 Task 6: understanding legal texts (Modi et al., 2023). Specifically, we first develop the Legal-BERT-HSLN model that considers the comprehensive context information in both intra- and inter-sentence levels to predict rhetorical roles (subtask A) and then train a Legal-LUKE model, which is legal-contextualized and entity-aware, to recognize legal entities (subtask B). Our evaluations demonstrate that our designed models are more accurate than baselines, e.g., with an up to 15.0% better F1 score in subtask B. We achieved notable performance in the task leaderboard, e.g., 0.834 micro F1 score, and ranked No.5 out of 27 teams in subtask A.
Molecular property prediction is an important problem in drug discovery and materials science. As geometric structures have been demonstrated necessary for molecular property prediction, 3D information has been combined with various graph learning methods to boost prediction performance. However, obtaining the geometric structure of molecules is not feasible in many real-world applications due to the high computational cost. In this work, we propose a novel 3D pre-training framework (dubbed 3D PGT), which pre-trains a model on 3D molecular graphs, and then fine-tunes it on molecular graphs without 3D structures. Based on fact that bond length, bond angle, and dihedral angle are three basic geometric descriptors corresponding to a complete molecular 3D conformer, we first develop a multi-task generative pre-train framework based on these three attributes. Next, to automatically fuse these three generative tasks, we design a surrogate metric using the \textit{total energy} to search for weight distribution of the three pretext task since total energy corresponding to the quality of 3D conformer.Extensive experiments on 2D molecular graphs are conducted to demonstrate the accuracy, efficiency and generalization ability of the proposed 3D PGT compared to various pre-training baselines.
Large language models(LLMs) have shown excellent text generation capabilities, but there is still much space for improvement in accuracy, sometimes with grammatical errors, semantic inaccuracies, and contextual incoherence, which seriously affect the reliability of the models. These problems may originate from the difficulties and limitations encountered in the pattern extraction stage of large language models. How to utilize the generative power of large language models to generate as many possible patterns that help solve problems and find the optimal patterns from them, so as to use patterns to guide large language models to generate good content, has become a current research hotspot. In this paper, we propose a pattern extraction and selection framework, PatternGPT, which generates rich patterns through the extraction ability of large language models and draws on the idea of federation learning, where multiple agents collaborate with each other to generate diverse patterns. High-quality patterns are selected by defining criteria and optimization algorithms to personalize the guidance of the model generation process. PatternGPT has the advantages of generating diverse and useful patterns, extending relevant knowledge, facilitating efficient pattern use and transfer, and optimizing the quality of generated results and user experience, which provides an effective method for optimizing the text generation capability of large language models and is expected to drive further development in the field of intelligent dialogue and content generation. It is expected to promote further development in the field of intelligent dialogue and content generation.
In recent years, large language models (LLM) have emerged as powerful tools for diverse natural language processing tasks. However, their potential for recommendation systems remains relatively unexplored. This paper presents an innovative approach to recommendation systems using large language models (LLMs) based on text data. In this paper, we present a novel text-based large language model for recommendation (TBLLMR) that utilized the expressive power of LLM to generate personalized recommendation. TBLLMR uses LLM's understanding ability to interpret context, learn user preferences, and generate relevant recommendation. Our proposed approach leverages the vast knowledge encoded in large language models to accomplish recommendation tasks. We first we formulate specialized prompts to enhance the ability of LLM to comprehend recommendation tasks. Subsequently, we use these prompts to fine-tune the model on a dataset of user-item interactions, represented by textual data, to capture user preferences and item characteristics. Our research underscores the potential of text-based LLMs in revolutionizing the domain of recommendation systems and offers a foundational framework for future explorations in this field. We conduct extensive experiments on benchmark datasets, and the experiments shows that our TBLLMR has significant better results on large dataset.
Parallel software codes in high performance computing (HPC) continue to grow in complexity and scale as we enter the exascale era. A diverse set of emerging hardware and programming paradigms make developing, optimizing, and maintaining parallel software burdensome for developers. One way to alleviate some of these burdens is with automated development and analysis tools. Such tools can perform complex and/or remedial tasks for developers that increase their productivity and decrease the chance for error. So far, such tools for code development and performance analysis have been limited in the complexity of tasks they can perform. However, with recent advancements in language modeling, and the wealth of code related data that is now available online, these tools have started to utilize predictive language models to automate more complex tasks. In this paper, we show how large language models (LLMs) can be applied to tasks specific to high performance and scientific codes. We train LLMs using code and performance data that is specific to parallel codes. We compare several recent LLMs on HPC related tasks and introduce a new model, HPC-Coder, trained on parallel code. In our experiments we show that this model can auto-complete HPC functions where general models cannot, decorate for loops with OpenMP pragmas, and model performance changes in two scientific application repositories.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.