The Wasserstein distance, rooted in optimal transport (OT) theory, is a popular discrepancy measure between probability distributions with various applications to statistics and machine learning. Despite their rich structure and demonstrated utility, Wasserstein distances are sensitive to outliers in the considered distributions, which hinders applicability in practice. Inspired by the Huber contamination model, we propose a new outlier-robust Wasserstein distance $\mathsf{W}_p^\varepsilon$ which allows for $\varepsilon$ outlier mass to be removed from each contaminated distribution. Our formulation amounts to a highly regular optimization problem that lends itself better for analysis compared to previously considered frameworks. Leveraging this, we conduct a thorough theoretical study of $\mathsf{W}_p^\varepsilon$, encompassing characterization of optimal perturbations, regularity, duality, and statistical estimation and robustness results. In particular, by decoupling the optimization variables, we arrive at a simple dual form for $\mathsf{W}_p^\varepsilon$ that can be implemented via an elementary modification to standard, duality-based OT solvers. We illustrate the benefits of our framework via applications to generative modeling with contaminated datasets.
The current paper studies the problem of minimizing a loss $f(\boldsymbol{x})$ subject to constraints of the form $\boldsymbol{D}\boldsymbol{x} \in S$, where $S$ is a closed set, convex or not, and $\boldsymbol{D}$ is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives $f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2$ involving large tuning constants $\rho$ and the squared Euclidean distance of $\boldsymbol{D}\boldsymbol{x}$ from $S$. The next iterate $\boldsymbol{x}_{n+1}$ of the corresponding proximal distance algorithm is constructed from the current iterate $\boldsymbol{x}_n$ by minimizing the majorizing surrogate function $f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2$. For fixed $\rho$ and a subanalytic loss $f(\boldsymbol{x})$ and a subanalytic constraint set $S$, we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.
In graph analysis, a classic task consists in computing similarity measures between (groups of) nodes. In latent space random graphs, nodes are associated to unknown latent variables. One may then seek to compute distances directly in the latent space, using only the graph structure. In this paper, we show that it is possible to consistently estimate entropic-regularized Optimal Transport (OT) distances between groups of nodes in the latent space. We provide a general stability result for entropic OT with respect to perturbations of the cost matrix. We then apply it to several examples of random graphs, such as graphons or $\epsilon$-graphs on manifolds. Along the way, we prove new concentration results for the so-called Universal Singular Value Thresholding estimator, and for the estimation of geodesic distances on a manifold.
We develop the theory of a metric, which we call the $\nu$-based Wasserstein metric and denote by $W_\nu$, on the set of probability measures $\mathcal P(X)$ on a domain $X \subseteq \mathbb{R}^m$. This metric is based on a slight refinement of the notion of generalized geodesics with respect to a base measure $\nu$ and is relevant in particular for the case when $\nu$ is singular with respect to $m$-dimensional Lebesgue measure; it is also closely related to the concept of linearized optimal transport. The $\nu$-based Wasserstein metric is defined in terms of an iterated variational problem involving optimal transport to $\nu$; we also characterize it in terms of integrations of classical Wasserstein distance between the conditional probabilities and through limits of certain multi-marginal optimal transport problems. As we vary the base measure $\nu$, the $\nu$-based Wasserstein metric interpolates between the usual quadratic Wasserstein distance and a metric associated with the uniquely defined generalized geodesics obtained when $\nu$ is sufficiently regular. When $\nu$ concentrates on a lower dimensional submanifold of $\mathbb{R}^m$, we prove that the variational problem in the definition of the $\nu$-based Wasserstein distance has a unique solution. We establish geodesic convexity of the usual class of functionals and of the set of source measures $\mu$ such that optimal transport between $\mu$ and $\nu$ satisfies a strengthening of the generalized nestedness condition introduced in \cite{McCannPass20}. We also present two applications of the ideas introduced here. First, our dual metric is used to prove convergence of an iterative scheme to solve a variational problem arising in game theory. We also use the multi-marginal formulation to characterize solutions to the multi-marginal problem by an ordinary differential equation, yielding a new numerical method for it.
Modern data are increasingly both high-dimensional and heteroscedastic. This paper considers the challenge of estimating underlying principal components from high-dimensional data with noise that is heteroscedastic across samples, i.e., some samples are noisier than others. Such heteroscedasticity naturally arises, e.g., when combining data from diverse sources or sensors. A natural way to account for this heteroscedasticity is to give noisier blocks of samples less weight in PCA by using the leading eigenvectors of a weighted sample covariance matrix. We consider the problem of choosing weights to optimally recover the underlying components. In general, one cannot know these optimal weights since they depend on the underlying components we seek to estimate. However, we show that under some natural statistical assumptions the optimal weights converge to a simple function of the signal and noise variances for high-dimensional data. Surprisingly, the optimal weights are not the inverse noise variance weights commonly used in practice. We demonstrate the theoretical results through numerical simulations and comparisons with existing weighting schemes. Finally, we briefly discuss how estimated signal and noise variances can be used when the true variances are unknown, and we illustrate the optimal weights on real data from astronomy.
The mathematical forces at work behind Generative Adversarial Networks raise challenging theoretical issues. Motivated by the important question of characterizing the geometrical properties of the generated distributions, we provide a thorough analysis of Wasserstein GANs (WGANs) in both the finite sample and asymptotic regimes. We study the specific case where the latent space is univariate and derive results valid regardless of the dimension of the output space. We show in particular that for a fixed sample size, the optimal WGANs are closely linked with connected paths minimizing the sum of the squared Euclidean distances between the sample points. We also highlight the fact that WGANs are able to approach (for the 1-Wasserstein distance) the target distribution as the sample size tends to infinity, at a given convergence rate and provided the family of generative Lipschitz functions grows appropriately. We derive in passing new results on optimal transport theory in the semi-discrete setting.
Optimal experimental design (OED) plays an important role in the problem of identifying uncertainty with limited experimental data. In many applications, we seek to minimize the uncertainty of a predicted quantity of interest (QoI) based on the solution of the inverse problem, rather than the inversion model parameter itself. In these scenarios, we develop an efficient method for goal-oriented optimal experimental design (GOOED) for large-scale Bayesian linear inverse problem that finds sensor locations to maximize the expected information gain (EIG) for a predicted QoI. By deriving a new formula to compute the EIG, exploiting low-rank structures of two appropriate operators, we are able to employ an online-offline decomposition scheme and a swapping greedy algorithm to maximize the EIG at a cost measured in model solutions that is independent of the problem dimensions. We provide detailed error analysis of the approximated EIG, and demonstrate the efficiency, accuracy, and both data- and parameter-dimension independence of the proposed algorithm for a contaminant transport inverse problem with infinite-dimensional parameter field.
We study the class of first-order locally-balanced Metropolis--Hastings algorithms introduced in Livingstone & Zanella (2021). To choose a specific algorithm within the class the user must select a balancing function $g:\mathbb{R} \to \mathbb{R}$ satisfying $g(t) = tg(1/t)$, and a noise distribution for the proposal increment. Popular choices within the class are the Metropolis-adjusted Langevin algorithm and the recently introduced Barker proposal. We first establish a universal limiting optimal acceptance rate of 57% and scaling of $n^{-1/3}$ as the dimension $n$ tends to infinity among all members of the class under mild smoothness assumptions on $g$ and when the target distribution for the algorithm is of the product form. In particular we obtain an explicit expression for the asymptotic efficiency of an arbitrary algorithm in the class, as measured by expected squared jumping distance. We then consider how to optimise this expression under various constraints. We derive an optimal choice of noise distribution for the Barker proposal, optimal choice of balancing function under a Gaussian noise distribution, and optimal choice of first-order locally-balanced algorithm among the entire class, which turns out to depend on the specific target distribution. Numerical simulations confirm our theoretical findings and in particular show that a bi-modal choice of noise distribution in the Barker proposal gives rise to a practical algorithm that is consistently more efficient than the original Gaussian version.
Optimal transport distances have found many applications in machine learning for their capacity to compare non-parametric probability distributions. Yet their algorithmic complexity generally prevents their direct use on large scale datasets. Among the possible strategies to alleviate this issue, practitioners can rely on computing estimates of these distances over subsets of data, {\em i.e.} minibatches. While computationally appealing, we highlight in this paper some limits of this strategy, arguing it can lead to undesirable smoothing effects. As an alternative, we suggest that the same minibatch strategy coupled with unbalanced optimal transport can yield more robust behavior. We discuss the associated theoretical properties, such as unbiased estimators, existence of gradients and concentration bounds. Our experimental study shows that in challenging problems associated to domain adaptation, the use of unbalanced optimal transport leads to significantly better results, competing with or surpassing recent baselines.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.