Distributed immutable ledgers, or blockchains, allow the secure digitization of evidential transactions without relying on a trusted third-party. Evidential transactions involve the exchange of any form of physical evidence, such as money, birth certificate, visas, tickets, etc. Most of the time, evidential transactions occur in the context of complex procedures, called evidential protocols, among physical agents. The blockchain provides the mechanisms to transfer evidence, while smart contracts - programs executing within the blockchain in a decentralized and replicated fashion - allow encoding evidential protocols on top of a blockchain. As a smart contract foregoes trusted third-parties and runs on several machines anonymously, it constitutes a highly critical program that has to be secure and trusted-by-design. While most of the current smart contract languages focus on easy programmability, they do not directly address the need of guaranteeing trust and accountability, which becomes a significant issue when evidential protocols are encoded as smart contracts.
Unstructured data formats account for over 80% of the data currently stored, and extracting value from such formats remains a considerable challenge. In particular, current approaches for managing unstructured documents do not support ad-hoc analytical queries on document collections. Moreover, Large Language Models (LLMs) directly applied to the documents themselves, or on portions of documents through a process of Retrieval-Augmented Generation (RAG), fail to provide high accuracy query results, and in the LLM-only case, additionally incur high costs. Since many unstructured documents in a collection often follow similar templates that impart a common semantic structure, we introduce ZenDB, a document analytics system that leverages this semantic structure, coupled with LLMs, to answer ad-hoc SQL queries on document collections. ZenDB efficiently extracts semantic hierarchical structures from such templatized documents, and introduces a novel query engine that leverages these structures for accurate and cost-effective query execution. Users can impose a schema on their documents, and query it, all via SQL. Extensive experiments on three real-world document collections demonstrate ZenDB's benefits, achieving up to 30% cost savings compared to LLM-based baselines, while maintaining or improving accuracy, and surpassing RAG-based baselines by up to 61% in precision and 80% in recall, at a marginally higher cost.
High-level synthesis, source-to-source compilers, and various Design Space Exploration techniques for pragma insertion have significantly improved the Quality of Results of generated designs. These tools offer benefits such as reduced development time and enhanced performance. However, achieving high-quality results often requires additional manual code transformations and tiling selections, which are typically performed separately or as pre-processing steps. Although DSE techniques enable code transformation upfront, the vastness of the search space often limits the exploration of all possible code transformations, making it challenging to determine which transformations are necessary. Additionally, ensuring correctness remains challenging, especially for complex transformations and optimizations. To tackle this obstacle, we first propose a comprehensive framework leveraging HLS compilers. Our system streamlines code transformation, pragma insertion, and tiles size selection for on-chip data caching through a unified optimization problem, aiming to enhance parallelization, particularly beneficial for computation-bound kernels. Them employing a novel Non-Linear Programming (NLP) approach, we simultaneously ascertain transformations, pragmas, and tile sizes, focusing on regular loop-based kernels. Our evaluation demonstrates that our framework adeptly identifies the appropriate transformations, including scenarios where no transformation is necessary, and inserts pragmas to achieve a favorable Quality of Results.
Data augmentation is a key technique for addressing the challenge of limited datasets, which have become a major component in the training procedures of image processing. Techniques such as geometric transformations and color space adjustments have been thoroughly tested for their ability to artificially expand training datasets and generate semi-realistic data for training purposes. Data augmentation is the most important key to addressing the challenge of limited datasets, which have become a major component of image processing training procedures. Data augmentation techniques, such as geometric transformations and color space adjustments, are thoroughly tested for their ability to artificially expand training datasets and generate semi-realistic data for training purposes. Polygons play a crucial role in instance segmentation and have seen a surge in use across advanced models, such as YOLOv8. Despite their growing popularity, the lack of specialized libraries hampers the polygon-augmentation process. This paper introduces a novel solution to this challenge, embodied in the newly developed AugmenTory library. Notably, AugmenTory offers reduced computational demands in both time and space compared to existing methods. Additionally, the library includes a postprocessing thresholding feature. The AugmenTory package is publicly available on GitHub, where interested users can access the source code: //github.com/Smartory/AugmenTory
Uncertainty estimation (UE), as an effective means of quantifying predictive uncertainty, is crucial for safe and reliable decision-making, especially in high-risk scenarios. Existing UE schemes usually assume that there are completely-labeled samples to support fully-supervised learning. In practice, however, many UE tasks often have no sufficiently-labeled data to use, such as the Multiple Instance Learning (MIL) with only weak instance annotations. To bridge this gap, this paper, for the first time, addresses the weakly-supervised issue of Multi-Instance UE (MIUE) and proposes a new baseline scheme, Multi-Instance Residual Evidential Learning (MIREL). Particularly, at the fine-grained instance UE with only weak supervision, we derive a multi-instance residual operator through the Fundamental Theorem of Symmetric Functions. On this operator derivation, we further propose MIREL to jointly model the high-order predictive distribution at bag and instance levels for MIUE. Extensive experiments empirically demonstrate that our MIREL not only could often make existing MIL networks perform better in MIUE, but also could surpass representative UE methods by large margins, especially in instance-level UE tasks.
The framework of graded semantics uses graded monads to capture behavioural equivalences of varying granularity, for example as found on the linear-time/branching-time spectrum, over general system types. We describe a generic Spoiler-Duplicator game for graded semantics that is extracted from the given graded monad, and may be seen as playing out an equational proof; instances include standard pebble games for simulation and bisimulation as well as games for trace-like equivalences and coalgebraic behavioural equivalence. Considerations on an infinite variant of such games lead to a novel notion of infinite-depth graded semantics. Under reasonable restrictions, the infinite-depth graded semantics associated to a given graded equivalence can be characterized in terms of a determinization construction for coalgebras under the equivalence at hand.
V2X cooperation, through the integration of sensor data from both vehicles and infrastructure, is considered a pivotal approach to advancing autonomous driving technology. Current research primarily focuses on enhancing perception accuracy, often overlooking the systematic improvement of accident prediction accuracy through end-to-end learning, leading to insufficient attention to the safety issues of autonomous driving. To address this challenge, this paper introduces the UniE2EV2X framework, a V2X-integrated end-to-end autonomous driving system that consolidates key driving modules within a unified network. The framework employs a deformable attention-based data fusion strategy, effectively facilitating cooperation between vehicles and infrastructure. The main advantages include: 1) significantly enhancing agents' perception and motion prediction capabilities, thereby improving the accuracy of accident predictions; 2) ensuring high reliability in the data fusion process; 3) superior end-to-end perception compared to modular approaches. Furthermore, We implement the UniE2EV2X framework on the challenging DeepAccident, a simulation dataset designed for V2X cooperative driving.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.