This paper studies the exposure bias problem in task-oriented dialog systems, where the model's generated content over multiple turns drives the dialog context away from the ground-truth distribution at training time, introducing error propagation and damaging the robustness of the TOD system. To bridge the gap between training and inference for multi-turn task-oriented dialogs, we propose session-level sampling which explicitly exposes the model to sampled generated content of dialog context during training. Additionally, we employ a dropout-based consistency regularization with the masking strategy R-Mask to further improve the robustness and performance of the model. The proposed UBARv2 achieves state-of-the-art performance on the standardized evaluation benchmark MultiWOZ and extensive experiments show the effectiveness of the proposed methods.
Data and algorithm sharing is an imperative part of data and AI-driven economies. The efficient sharing of data and algorithms relies on the active interplay between users, data providers, and algorithm providers. Although recommender systems are known to effectively interconnect users and items in e-commerce settings, there is a lack of research on the applicability of recommender systems for data and algorithm sharing. To fill this gap, we identify six recommendation scenarios for supporting data and algorithm sharing, where four of these scenarios substantially differ from the traditional recommendation scenarios in e-commerce applications. We evaluate these recommendation scenarios using a novel dataset based on interaction data of the OpenML data and algorithm sharing platform, which we also provide for the scientific community. Specifically, we investigate three types of recommendation approaches, namely popularity-, collaboration-, and content-based recommendations. We find that collaboration-based recommendations provide the most accurate recommendations in all scenarios. Plus, the recommendation accuracy strongly depends on the specific scenario, e.g., algorithm recommendations for users are a more difficult problem than algorithm recommendations for datasets. Finally, the content-based approach generates the least popularity-biased recommendations that cover the most datasets and algorithms.
Extractive question answering (QA) models tend to exploit spurious correlations to make predictions when a training set has unintended biases. This tendency results in models not being generalizable to examples where the correlations do not hold. Determining the spurious correlations QA models can exploit is crucial in building generalizable QA models in real-world applications; moreover, a method needs to be developed that prevents these models from learning the spurious correlations even when a training set is biased. In this study, we discovered that the relative position of an answer, which is defined as the relative distance from an answer span to the closest question-context overlap word, can be exploited by QA models as superficial cues for making predictions. Specifically, we find that when the relative positions in a training set are biased, the performance on examples with relative positions unseen during training is significantly degraded. To mitigate the performance degradation for unseen relative positions, we propose an ensemble-based debiasing method that does not require prior knowledge about the distribution of relative positions. We demonstrate that the proposed method mitigates the models' reliance on relative positions using the biased and full SQuAD dataset. We hope that this study can help enhance the generalization ability of QA models in real-world applications.
Distributed fuzzy neural networks (DFNNs) have attracted increasing attention recently due to their learning abilities in handling data uncertainties in distributed scenarios. However, it is challenging for DFNNs to handle cases in which the local data are non-independent and identically distributed (non-IID). In this paper, we propose a federated fuzzy neural network (FedFNN) with evolutionary rule learning (ERL) to cope with non-IID issues as well as data uncertainties. The FedFNN maintains a global set of rules in a server and a personalized subset of these rules for each local client. ERL is inspired by the theory of biological evolution; it encourages rule variations while activating superior rules and deactivating inferior rules for local clients with non-IID data. Specifically, ERL consists of two stages in an iterative procedure: a rule cooperation stage that updates global rules by aggregating local rules based on their activation statuses and a rule evolution stage that evolves the global rules and updates the activation statuses of the local rules. This procedure improves both the generalization and personalization of the FedFNN for dealing with non-IID issues and data uncertainties. Extensive experiments conducted on a range of datasets demonstrate the superiority of the FedFNN over state-of-the-art methods.
In this paper, we explore an approach to auxiliary task discovery in reinforcement learning based on ideas from representation learning. Auxiliary tasks tend to improve data efficiency by forcing the agent to learn auxiliary prediction and control objectives in addition to the main task of maximizing reward, and thus producing better representations. Typically these tasks are designed by people. Meta-learning offers a promising avenue for automatic task discovery; however, these methods are computationally expensive and challenging to tune in practice. In this paper, we explore a complementary approach to the auxiliary task discovery: continually generating new auxiliary tasks and preserving only those with high utility. We also introduce a new measure of auxiliary tasks usefulness based on how useful the features induced by them are for the main task. Our discovery algorithm significantly outperforms random tasks, hand-designed tasks, and learning without auxiliary tasks across a suite of environments.
Recent model-based reference-free metrics for open-domain dialogue evaluation exhibit promising correlations with human judgment. However, they either perform turn-level evaluation or look at a single dialogue quality dimension. One would expect a good evaluation metric to assess multiple quality dimensions at the dialogue level. To this end, we are motivated to propose a multi-dimensional dialogue-level metric, which consists of three sub-metrics with each targeting a specific dimension. The sub-metrics are trained with novel self-supervised objectives and exhibit strong correlations with human judgment for their respective dimensions. Moreover, we explore two approaches to combine the sub-metrics: metric ensemble and multitask learning. Both approaches yield a holistic metric that significantly outperforms individual sub-metrics. Compared to the existing state-of-the-art metric, the combined metrics achieve around 16% relative improvement on average across three high-quality dialogue-level evaluation benchmarks.
A key learning goal of learners taking database systems course is to understand how SQL queries are processed in an RDBMS in practice. To this end, comprehension of the cost-based comparison of different plan choices to select the query execution plan (QEP) of a query is paramount. Unfortunately, off-the-shelf RDBMS typically only expose the selected QEP to users without revealing information about representative alternative query plans considered during QEP selection in a learner-friendly manner, hindering the learning process. In this paper, we present a novel end-to-end and generic framework called ARENA that facilitates exploration of informative alternative query plans of a given SQL query to aid the comprehension of QEP selection. Under the hood, ARENA addresses a novel problem called alternative plan selection problem (TIPS) which aims to discover a set of k alternative plans from the underlying plan space so that the plan interestingness of the set is maximized. Specifically, we explore two variants of the problem, namely batch TIPS and incremental TIPS, to cater to diverse set of learners. Due to the computational hardness of the problem, we present a 2 approximation algorithm to address it efficiently. Exhaustive experimental study with real-world learners demonstrates the effectiveness of arena in enhancing learners' understanding of the alternative plan choices considered during QEP selection.
In spite of the high performance and reliability of deep learning algorithms in a wide range of everyday applications, many investigations tend to show that a lot of models exhibit biases, discriminating against specific subgroups of the population (e.g. gender, ethnicity). This urges the practitioner to develop fair systems with a uniform/comparable performance across sensitive groups. In this work, we investigate the gender bias of deep Face Recognition networks. In order to measure this bias, we introduce two new metrics, $\mathrm{BFAR}$ and $\mathrm{BFRR}$, that better reflect the inherent deployment needs of Face Recognition systems. Motivated by geometric considerations, we mitigate gender bias through a new post-processing methodology which transforms the deep embeddings of a pre-trained model to give more representation power to discriminated subgroups. It consists in training a shallow neural network by minimizing a Fair von Mises-Fisher loss whose hyperparameters account for the intra-class variance of each gender. Interestingly, we empirically observe that these hyperparameters are correlated with our fairness metrics. In fact, extensive numerical experiments on a variety of datasets show that a careful selection significantly reduces gender bias.
Task-oriented dialogue (TOD) systems have assisted users on many tasks, including ticket booking and service inquiries. While existing TOD systems have shown promising performance in serving customer needs, these systems mostly assume that users would interact with the dialogue agent politely. This assumption is unrealistic as impatient or frustrated customers may also interact with TOD systems impolitely. This paper aims to address this research gap by investigating impolite users' effects on TOD systems. Specifically, we constructed an impolite dialogue corpus and conducted extensive experiments to evaluate the state-of-the-art TOD systems on our impolite dialogue corpus. Our experimental results show that existing TOD systems are unable to handle impolite user utterances. We also present a data augmentation method to improve TOD performance in impolite dialogues. Nevertheless, handling impolite dialogues remains a very challenging research task. We hope by releasing the impolite dialogue corpus and establishing the benchmark evaluations, more researchers are encouraged to investigate this new challenging research task.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.